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Density Functional Theory

Kohn-Sham System: Exact density of an interacting system can be

calculated as density of a non-interacting system

n(~r) =
N∑

j=1

|φj(~r)|2,

where the Kohn-Sham orbitals are given by

(
−~2∇2

2m
+ vext(~r) + vh(~r) + vxc [n] (~r)

)
φj(~r) = εjφj(~r)

→ Density Functional Theory is formally exact, but approximations

of vxc are needed.
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Limitations of Functionals in Density Functional Theory

• Simple approximations for vxc work well for many chemical and

physical problems.

• Delocalization Error: transition state energies and barriers of

chemical reactions, band gaps of materials, energies of

dissociating molecular ions, excitation and binding energies of

charge transfer

• To gain insight and to understand current limitations of

functionals, we study the exact functional for model systems.



Our Model-System: Hamiltonian on a 1D Real-Space Lattice

T̂ = −t0
∑

l ,σ

(ĉ†l ,σ ĉl+1,σ + ĉ
†
l+1,σ ĉl ,σ) + 2t0

∑

l ,σ

n̂l ,σ, t0 =
1

2me∆x2

V̂ee =
∑

l ,m,σ,σ′

ĉ
†
l ,σ ĉ

†
m,σ′ ĉm,σ′ ĉl ,σ

2
√

(l∆x −m∆x)2 + 1
, V̂ee = U

∑

l

n̂l ,↑n̂l ,↓

V̂ext =
∑

l ,σ

Vext(l)n̂l ,σ

V̂N = µN̂



Levy-Lieb Constrained Search

1-to-1-map

n(~r) =
∫
d3r2...

∫
d3rN|Ψ0(~r, ~r2, ...~rN)|2

Ĥ
Ψ
0 =

E
Ψ
0

Ψ0 n(~r)

vext

Hohenberg-Kohn functional

FHK[n(~r)] = min
Ψ→n(~r)

〈Ψ[n(~r)]| T̂ + V̂ee |Ψ[n(~r)]〉

Hohenberg-Kohn functional for two sites FHK[n1, n2]



The Exact Hohenberg-Kohn Functional for Two Sites



Soft-Coulomb Molecules in 1D

Ĥ(α) = T̂ + Ŵ + V̂ (α)

T̂ =
2∑

j=1

− d2

dx2j

Ŵ =
1

2

2∑

i 6=j

1√
(xi − xj)2 + 1

V̂ (α) =
2∑

j=1

Z1(α)√
(xj − d)2 + 1

+
Z2(α)√

(xj + d)2 + 1

Z1(α) = −α, Z2(α) = −(2− α), α ∈ [0, 2], d = 3, 8 Bohr



Exact Density and Kohn-Sham Potential

Exact Kohn-Sham potential for two electrons in spin singlet

con�guration (Helbig et al. 2009 )

vKS(x) =
1

2

∇2
√
n(x)√

n(x)
+ ε1

Exact solution of static two-electron Schrödinger equation with

octopus (A. Castro et al.)

Ĥ(α)Ψj(α) = Ej(α)Ψj(α)

n(x) = 〈Ψ| n̂(x) |Ψ〉
n̂(x) =

∑

j

δ(x − xj)



Intra-System Derivative Discontinuity for 1D Molecules

Interacting System Kohn-Sham-System

External Potential                                     Effective Potential

Acceptor Donor
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Intra-System Derivative Discontinuity for 1D Molecules



Summary & Outlook

• Density Functional Theory is e�cient, and formally exact.

• Approximations for vxc needed.

• Exact vxc(x) has steps and peaks (Helbig et al. 2009).

• Intra- (and Inter-) system derivative discontinuity of exact

functional vxc[n(x)] for n-site model

• We link the intra-system derivative discontinuity of the n-site

model to the intra-system derivative discontinuity of two

particles in 1D-molecules.

• We currently develop a functional, which incoporates the

intra-system derivative discontinuity.

Thank you!
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