The various Ti-based nanostructures presented good properties as adsorbents of metals from aqueous solutions of various sources; however, their application in this environmental field is not fully investigated. The future for these nanoadsorbents in this field seemed to be promising and worth to be investigated.

NANOSTRUCTURES OBSTENTION AND TYPES

<table>
<thead>
<tr>
<th>TiO₂</th>
<th>5-12 M NaOH 2 h</th>
<th>NANOSHEETS + Na₂TiO₂.H₂O</th>
<th>4 h</th>
<th>NANTUBE + Na₂TiO₂.H₂O</th>
<th>Orthorhombic</th>
<th>6 h</th>
<th>NANOWIRES + Na₂TiO₂·OH</th>
<th>Monoclinic</th>
<th>TiO₂</th>
<th>> 15 M NaOH</th>
<th>AMORPHOUS TITANATE NANOPARTICLES</th>
</tr>
</thead>
</table>

TITANATE-BASED NANOMATERIALS AS ADSORBENTS OF METALS FROM AQUEOUS SOLUTION

The adsorption capacity of the titanate nanotubes for removal of copper (II) depends on the amount of Na⁺ in the nanotubes. The maximum capacity is of near 1.9 mmol/g at a pH value 5 [2].

The adsorption of Pb (II) dissolved in the solutions was investigated by several methods: macroscopic batch procedures [1].

REFERENCES

ACKNOWLEDGEMENTS

To the CSIC Agency (Spain) for support.