Metallo-Folded Single-Chain Nanoparticles with Catalytic Selectivity

Ana Sanchez-Sanchez,1,2 Arantxa Arbe,1 Juan Colmenero1,2,3 and José A. Pomposo*1,2,4

1Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
2Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20800 San Sebastián, Spain
3Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
4IKERBASQUE - Basque Foundation for Science, Alameda Urquijo 36, 48011 Bilbao, Spain

Supporting Information

ABSTRACT: Mimicking the substrate specificity and catalytic activity of enzymes is of great interest for different fields (e.g., chemistry, biology, nanomedicine). Enhanced reaction rates using artificial, enzyme-mimic catalysts based on a variety of molecular structures and nano-entities (e.g., macrocyclic compounds, star and helical polymers, dendrimers) have been previously reported. However, examples of enzyme-sized soft entities displaying substrate specificity are certainly scarce. Herein, we report the synthesis and characterization of single-chain nanoparticles based on metallo-folded polymer chains containing complexed Cu(II) ions showing catalytic specificity during the oxidative coupling of mixtures of chemically related terminal acetylene substrates. This work paves the way for the easy and efficient construction of other Pd, Ni, Co, Fe, Mn or Mo-containing soft nano-entities approaching the substrate specificity of natural enzymes for a variety of organic reactions.

Enzymes showing outstanding catalytic activity and extreme substrate specificity are a continuing source of inspiration for green chemistry practitioners. Concerning catalytic activity, several artificial enzyme-mimic molecular structures and soft nano-entities approaching the size of natural enzymes have been synthesized based on macrocyclic compounds,1 star,2 hyperbranched3 and helical4 polymers as well as dendrimers,5 among other systems.6 However, examples of soluble nano-sized soft catalysts displaying pronounced enzyme-like substrate specificity are relatively scarce. For instance, limited control over substrate specificity was achieved with 4-(dialkylamino) pyridine-functionalized polymers during the solvolysis of p-nitrophenyl alkanoates in aqueous methanol solution.7 Also, efficient hydrolysis of a phenyl ester compound was shown by a molecularly imprinted soluble polymer nanogel having a molecular weight of 40 kDa.8 To our best knowledge, no example of extraordinary catalytic specificity (i.e., reaction of only one substrate from a mixture of chemically related substances) has been reported by using synthetic soft nano-entities approaching the size of natural enzymes (5-15 nm).

The synthesis of biomimetic catalysts based on individual self-cross-linked polymer chains (single-chain nanoparticles, SCNPs) is challenging due to the polydisperse nature in size and composition of current synthetic polymers and the lack of efficient folding protocols.8,9 Consequently, current SCNPs mimic the structure of folded biomacromolecules only in an approximate manner.10 In spite of these limitations, SCNPs have been revealed as simple model systems to which valuable enzyme-like activity can be endowed by means of imprinted particle,11 hydrophobic cavity12 or concurrent binding/folding13 strategies. In particular, the recently reported “concurrent” strategy opens new, promising avenues for endowing SCNPs with enzyme-mimetic properties such as outstanding catalytic activity and extreme substrate specificity.

Herein, we demonstrate how metallo-folded SCNPs containing complexed Cu(II) ions produced by means of such a versatile approach (Scheme 1, NP1) display catalytic specificity during the oxidative coupling of mixtures of chemically related terminal acetylene substrates. Such specificity is not affordable by classical catalysts (i.e., CuCl2, Cu(OAc)2, Cu(acac)2) under exactly the same reaction conditions. Moreover, a wide range of other metallo-folded SCNPs can be envisioned by appropriate selection of metal ions (e.g., Pd, Ni, Co, Fe, Mn, Mo) pointing to the potential broad scope of the concurrent binding/folding strategy.

We have prepared metallo-folded SCNPs based upon previously synthesized copolymers10 containing methyl methacrylate (MMA) and 2-(acetoacetoxy)ethyl methacrylate (AEMA) repeat units (Scheme 1, P1, see Supporting Information, SI) that feature β-ketoester reactive functions which serve as handles for concurrent binding/folding via intrachain Cu(II) complexion of AEMA units. SCNP formation was carried out under very mild conditions, in THF at room temperature by using Cu(OAc)2 as reagent at high dilution conditions (1 mg/ml) to minimize, as much as possible, unwanted inter-particle coupling events. We selected precursor P1 with a content of reactive AEMA units of 30 mol%, relatively high Mw (weight average molecular weight, Mw = 375 kDa) and relatively low dispersity (D = 1.4) to facilitate accurate detection of size reduction upon SCNP formation by combined size-exclusion chromatography / multi-angle laser light scattering (SEC / MALLS) measurements. The collapse of the linear polymer precursor P1 to SCNP NP1 upon progressive addition of Cu(OAc)2 is illustrated in Figure 1A. A significant increase in retention time was observed for NP1 when compared to P1 as a consequence of the reduction in hydrodynamic size upon SCNP formation; an observation which is consistent with previous works in this field.13 The average radius of gyration was found to decrease from 26 nm for P1 to 15 nm for NP1, as determined by the MALLS technique.

SCNP formation was carried out under very mild conditions, in THF at room temperature by using Cu(OAc)2 as reagent at high dilution conditions (1 mg/ml) to minimize, as much as possible, unwanted inter-particle coupling events. We selected precursor P1 with a content of reactive AEMA units of 30 mol%, relatively high Mw (weight average molecular weight, Mw = 375 kDa) and relatively low dispersity (D = 1.4) to facilitate accurate detection of size reduction upon SCNP formation by combined size-exclusion chromatography / multi-angle laser light scattering (SEC / MALLS) measurements. The collapse of the linear polymer precursor P1 to SCNP NP1 upon progressive addition of Cu(OAc)2 is illustrated in Figure 1A. A significant increase in retention time was observed for NP1 when compared to P1 as a consequence of the reduction in hydrodynamic size upon SCNP formation; an observation which is consistent with previous works in this field.13 The average radius of gyration was found to decrease from 26 nm for P1 to 15 nm for NP1, as determined by the MALLS technique.
Evidence of AEMA complexation by copper ions was obtained by infra-red (IR) spectroscopy, in which characteristics vibration bands located at 1600 cm\(^{-1}\) (stretching C=O vibration, enol tautomer bonded to Cu) and 1515 cm\(^{-1}\) (stretching C=C vibration, enol tautomer bonded to Cu) were observed in the IR spectrum of NP1 (Figure 1B). In good solvent, NP1 shows a more compact conformation than that of precursor P1, as revealed by small angle neutron scattering (SANS) experiments (see Figures 1C and S1). The spherical shape of NP1 in the dry state is shown in Figure 1D. The copper incorporated into NP1 amounted to 26 mol % with respect to AEMA units as deduced from thermal gravimetric analysis (TGA) (see Figure S2). The oxidation state of copper ions in the Cu(AEMA)\(_2\) complexes of NP1 was determined to be +2 by means of X-ray photoelectron spectroscopy (XPS) measurements (see Figure S3). The amount of metal incorporated into NP1 was similar to that in organometallic nanoparticles synthesized through intramolecular chelation of individual ROMP-derived poly(1,5-cyclooctadiene) chains by Rh(I) ions.\(^{14}\)

Having shown a mild and efficient synthetic procedure to prepare metallo-folded SCNPs containing complexed Cu(II), we turned our attention towards the potential enzyme-mimic properties of these soft nano-entities when compared to classical catalysts (i.e., CuCl\(_2\), Cu(OAc)\(_2\), Cu(acac)\(_2\)). Hence, to evaluate the catalytic activity and substrate specificity of copper-containing SCNPs, we explored their use as soft catalysts in an environmentally friendly, economical and efficient method\(^{15}\) for transforming terminal acetylenes into 1,3-dynes via oxidative coupling. It is worth mentioning that 1,3-dynes have attracted significant interest as building blocks for the supramolecular materials,\(^{16}\) x-conjugated acetylenic oligomers and polymers,\(^{17}\) industrial and pharmaceutical intermediates,\(^{18}\) as well as anti-tumor agents.\(^{19}\)

Thus, as a first control experiment we performed the coupling of a series of terminal alkylene compounds to 1,3-dynes under optimized reaction conditions\(^ {13}\) involving the use of catalytic amounts of CuCl\(_2\) (1) (3 mol%) and Et\(_3\)N (3 mol%). These acetylenic compounds were selected to cover a broad range of chemically related substrates (Scheme 2). The bulk homocoupling procedure gave the corresponding diynes in good to excellent yields (36 - 99%, Table 1) with the exception of compound 8a having a bromo functional group (Table 1, entry 8). As expected, catalyst I showed no specificity, since binary or ternary mixtures of terminal alkynes, as reagents, lead to complex mixtures of diynes, as products, due to both homo- and cross-coupling reactions (Table 1, entries 19, 21, 23, 25 and Figure 2). By reducing the amount of catalysts to 0.5 mol% Cu no reaction was observed to take place. The catalyst was found to work also in the presence of aromatic solvents (Table 1, entry 2).

![Scheme 1. Idealized picture of metallo-folded single-chain nanoparticle NP1 synthesized from precursor P1.](image)

![Figure 1. A) Size-exclusion chromatography traces in THF corresponding to the formation of NP1 by progressive addition of Cu(OAc)\(_2\): 0.17 mM (blue curve), 0.34 mM (green curve) and 0.51 mM (orange curve) to a P1 solution (red curve). B) IR spectra of precursor P1 and NP1 showing specific vibration bands (a, b) arising from Cu(AEMA)\(_2\) complexes. C) SANS Kratky plots of P1 and NP1 solutions. A shoulder is observed at low Q values due to a more compact conformation of NP1 in solution when compared to that of P1 (see SI). D) TEM image of NP1 in the dry state (inset is a magnification; NP1 size ≈ 20 nm).](image)
Scheme 2. Chemical structures of terminal alkynes used in this work.

Table 1. Unprecedented catalytic selectivity of NP1 when compared to CuCl₂ (1) during the coupling of terminal alkynes to 1,3-diynes under solvent-free conditions.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Reagents</th>
<th>Products</th>
<th>Yield (%)</th>
<th>Selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>2a</td>
<td>2b</td>
<td>>98</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>2a</td>
<td>2b</td>
<td>93(^c)</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>3a</td>
<td>3b</td>
<td>>98</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>I</td>
<td>4a</td>
<td>4b</td>
<td>57</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>5a</td>
<td>5b</td>
<td>>98</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>6a</td>
<td>6b</td>
<td>>98</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>I</td>
<td>7a</td>
<td>7b</td>
<td>36</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>I</td>
<td>8a</td>
<td>8b</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>9a</td>
<td>9b</td>
<td>77</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>NP1</td>
<td>2a</td>
<td>2b</td>
<td>>98</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>NP1</td>
<td>2a</td>
<td>2b</td>
<td>91(^c)</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>NP1</td>
<td>3a</td>
<td>3b</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>NP1</td>
<td>4a</td>
<td>4b</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>NP1</td>
<td>5a</td>
<td>5b</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>NP1</td>
<td>6a</td>
<td>6b</td>
<td>27</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>NP1</td>
<td>7a</td>
<td>7b</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>NP1</td>
<td>8a</td>
<td>8b</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>NP1</td>
<td>9a</td>
<td>9b</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>I</td>
<td>2a+3a</td>
<td>Mixture(^d)</td>
<td>97</td>
<td>No</td>
</tr>
<tr>
<td>20</td>
<td>NP1</td>
<td>2a+3a</td>
<td>Mixture(^d)</td>
<td>97</td>
<td>No</td>
</tr>
<tr>
<td>21</td>
<td>I</td>
<td>2a+4a</td>
<td>Mixture(^d)</td>
<td>51</td>
<td>No</td>
</tr>
<tr>
<td>22</td>
<td>NP1</td>
<td>2a+4a</td>
<td>Mixture(^d)</td>
<td>>98(^d)</td>
<td>Yes</td>
</tr>
<tr>
<td>23</td>
<td>I</td>
<td>3a+4a</td>
<td>Mixture(^d)</td>
<td>52</td>
<td>No</td>
</tr>
<tr>
<td>24</td>
<td>NP1</td>
<td>3a+4a</td>
<td>Mixture(^d)</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>25</td>
<td>I</td>
<td>2a+3a+4a</td>
<td>Mixture(^d)</td>
<td>84</td>
<td>No</td>
</tr>
<tr>
<td>26</td>
<td>NP1</td>
<td>2a+3a+4a</td>
<td>Mixture(^d)</td>
<td>84</td>
<td>No</td>
</tr>
<tr>
<td>27</td>
<td>NP1</td>
<td>2a+3a+4a</td>
<td>Mixture(^d)</td>
<td>>98(^d)</td>
<td>Yes</td>
</tr>
<tr>
<td>28</td>
<td>NP1</td>
<td>2a+3a+6a</td>
<td>Mixture(^d)</td>
<td>>98(^d)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

\(^a\) Reaction conditions: solvent-free, 1 mmol of alkyne, Et₃N (3 mol%), I: 3 mol% Cu, or NP1: 0.5 mol% Cu, 60 °C, 8 h, air. \(^b\) From GC and \(^c\) H NMR data. \(^d\) Diluted with toluene to half of the original alkyne concentration.

\(^d\) Mixture of products as a result of combined homo- and cross-coupling reactions. \(^e\) No by-products from cross-coupling reactions were detected. \(^f\) Reaction time: 24 h. \(^g\) Referred to (2a+3a+6a).

Figure 2. A) Gas chromatography (GC) traces of the 2a + 3a + 4a reagent mixture (blue trace) and products obtained by using CuCl₂ (1) (green curve) or metallo-folded SCNP NP1 (red curve) as catalysts during oxidative coupling. B) \(^1\)H NMR spectra showing signals from acetylenic protons of the 2a + 3a + 4a reagent mixture (blue trace) and same spectral zone after reaction using CuCl₂ (1) (green trace) or metallo-folded SCNP NP1 (red trace) as catalysts during oxidative coupling. The peak area relative to that of peak 3a is indicated for the blue and red traces.

was also observed by running the reaction in aromatic solvent (Table 1, entry 11). Moreover, in competitive experiments involving ternary mixtures of 2a, 3a and 4a (Table 1, entry 26) no sign of cross-coupling products was observed by GC, giving only 2b as the product in a highly selective manner. NP1 showed catalytic selectivity towards the propargylic substrates in mixtures of 2a, 3a and 6a (Table 1, entry 28). Moreover, this selectivity towards 2a, and to a minor extension 6a, was maintained in control experiments using compounds with a group more bulky than a proton near the acetate, or having an additional methylene group between the acetate group and the alkyn moiety (see SI). It is worth mentioning that neither Cu(OAc)₂ nor Cu(acac)₂ compounds were found to display significant catalytic activity at a concentration of 0.5 mol% Cu for compounds 2a-9a. Although this behavior could be tentatively attributed to a local environment in NP1 with a high enough amount of Cu complex concentration since the presence of a competitive solvent such as ethyl acetate slows the reaction, no reaction was observed in control experiments by increasing the Cu(acac)₂ concentration even to 3 mol% Cu (see SI). At this stage, one can hypothesize that the pronounced substrate specificity
displayed by NP1 when compared to Cu(OAc)₂ and Cu(acac)₂ complexes could result from the formation of multiple, compartmentalized local catalytic sites composed of Cu(AEMA)₃ complexes surrounded by an environment of methyl methacrylate repeat units allowing an optimum transition state stabilization for the propargylic substrate 2a and, to a minor extent, 6a.

To further investigate the origin of the catalytic selectivity, the electronic absorption spectra of Cu(OAc)₂, Cu(acac)₂ and NP1 in dimethyl sulfoxide (DMSO) were recorded as illustrated in Figure 3. The UV-vis spectrum of the Cu(OAc)₂ complex showed

one very broad d-d band at 720 nm and a band in the UV region centered at 260 nm due to Cu-to-OAc metal to ligand charge transfer (MLCT) transitions. The Cu(acac)₂ complex displayed only a MLCT band at 297 nm, whereas the NP1 showed a MLCT band centered at 271 nm, a value in between those observed for the Cu(OAc)₂ and Cu(acac)₂ complexes. Both steric and electronic complementarities of the catalytic sites for 2a and to minor extent 6a in the rate-determining transition step could be responsible for the catalytic selectivity displayed by NP1. Analysis of kinetics data using 2a as reagent (see SI) provided a value of the apparent catalytic constant of k_{cat(app)} = 8.8×10^{-3} s⁻¹, which is higher than that determined for molecularly imprinted soluble polymer nanogels (k_{cat} = 1.2×10⁶ s⁻¹)² and similar to that reported very recently for hydrophobic cavity-based catalytic SCNPs (k_{cat} = 5.3×10⁻² s⁻¹).¹¹

In summary, we have synthesized catalytically active single-chain nanoparticles based on metallo-folded polymer chains containing complexed Cu(II) ions by means of a mild and versatile concurrent binding/folding strategy. These synthetic soft nano-entities approaching the size of natural enzymes display catalytic specificity at low concentration of Cu(II) ions during the oxidative coupling of mixtures of chemically related terminal acetylene substrates, which cannot be attained with classical catalysts such as CuCl₂, Cu(OAc)₂ or Cu(acac)₂. Such substrate specificity has been tentatively attributed to the presence in the metallo-folded nanoparticles of multiple, compartmentalized local catalytic sites composed of Cu(AEMA)₃ complexes surrounded by an environment of methyl methacrylate repeat units allowing an optimum transition state stabilization for the preferred substrates. The specificity displayed by the metallo-folded SCNPs is very promising, and the preparation of other metallo-folded soft nano-objects (based on Pd, Ni, Co, Fe, Mn and Mo instead of Cu), as well as the study of their enzyme-mimic characteristics is anticipated.

ASSOCIATED CONTENT

Supporting Information
Materials and methods, characterization techniques, supporting data and references. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
Joséxtxo.pomposo@ehu.es

Notes
The authors declare no competing financial interests.

ACKNOWLEDGMENT

Financial support from the Projects MAT2012-31088 (MINECO), T-654-13 (GV) and S-PE13UN034 (GV) is acknowledged. A. S.-S. thanks the Ph.D. grant support of Basque Government. We sincerely acknowledge David Pickup, Mariano Barrado, Lourdes Irusta, Urs Gasser and Lourdes Leza for technical support with XPS, TEM, GC, SANS and purification techniques, respectively.

This work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institute, Villigen, Switzerland, and has been supported by the European Commission under the 7th Framework Programme through the “Research Infrastructures” action of the “Capacities” Programme, NMI3-II Grant Number 283883.

REFERENCES

(9) Sanchez-Sanchez, A.; Perez-Baena, I.; Pomposo, J. A. Molecules 2013, 18, 3339-3355.

(15) a) Wang, D.; Li, J.; Li, N.; Gao, T.; Hou, S.; Chen, B. Green Chem. 2010, 12, 45-48. b) Although 6 h of reaction time was reported as optimum reaction time, we found increased yields by extending the reaction time to 8 h.

Classical

\[\text{Equation} \]

2 \[R_1 \]
\[R_2 \]

2a + 3a + 4a

\[\text{No Selectivity} \]

Homocoupling

Heterocoupling Products

\[\text{Enzyme-mimic} \]

\[\text{Equation} \]

NPx

2 \[R_1 \]
\[R_2 \]

2b + 3a + 4a

\[\text{Catalytic Selectivity} \]

2b: >98% yield (ref. to 2a)

3b: Non-detected

4b: Non-detected

No heterocoupling

\[\text{Folded chain} \]

\[\text{Cu(I) ions} \]