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In theoretical ecology, traditional studies based on dynamical stabil-1

ity and numerical simulations have not found a unified answer to the2

effect of network architecture on community persistence. Here, we3

introduce a mathematical framework based on the concept of struc-4

tural stability to explain such a disparity of results. We investigate5

the range of conditions necessary for the stable coexistence of all6

species in mutualistic systems. We show that the apparently con-7

tradictory conclusions reached by previous studies arise as a conse-8

quence of overseeing either the necessary conditions for persistence9

or its dependence on model parameterization. We show that ob-10

served network architectures maximize the range of conditions for11

species coexistence. We discuss the applicability of structural sta-12

bility to study other types of interspecific interactions.13

A prevailing question in ecology (particularly since May’s (1) seminal work in the early14

1970s) is whether, given an observed number of species and their interactions, there are15

ways to organize those interactions that lead to more persistent communities. Conven-16

tionally, studies addressing this question have either looked into local stability or used17

numerical simulations (2–4). However, these studies have not found a unified answer18

yet (1, 5–12). Therefore, the current challenge is to develop a general framework to pro-19

vide a unified assessment of the implications of the architectural patterns of the networks20

we observe in nature.21

Main approaches in theoretical ecology22

Dynamical stability and feasibility23

Studies based on the mathematical notions of local stability, D-stability, and global sta-24

bility have advanced our knowledge on what makes ecological communities stable. In25
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particular, these studies explore how interaction strengths need to be distributed across1

species so that an assumed feasible equilibrium point can be stable (1–4,13–17). By def-2

inition, a feasible equilibrium point is that in which all species have a constant positive3

abundance across time. Note that a negative abundance makes no sense biologically and4

an abundance of zero would correspond to an extinct species.5

The dynamical stability of a feasible equilibrium point corresponds to the conditions6

under which the system returns to the equilibrium point after a perturbation in species7

abundance. Local stability, for instance, looks at whether a system will return to an as-8

sumed feasible equilibrium after an infinitesimal small perturbation (1–3,13). D-stability,9

in turn, looks at the local stability of any potential feasible equilibrium that the system10

may have (15–17). More generally, global stability looks at the stability of any potential11

feasible equilibrium point after a perturbation of any given amplitude (14–17). Note 1812

provides a technical definition of these different types of dynamical stability and their13

relationship.14

In most of these stability studies, however, a feasible equilibrium point is always15

assumed without rigorously studying the set of conditions allowing its existence (5,14,15,16

19). Yet, in any given system, we can find examples where we satisfy only one, both, or17

none of the feasibility and stability conditions (3, 16, 17, 19). This means that without a18

proper consideration of the feasibility conditions, any conclusion for studying the stable19

coexistence of species is based on a system that may or may not exist (3,5,19).20

To illustrate this point, consider the following textbook example of a two-species com-21

petition system:22


dN1

dt
= N1

(
α1 − β11N1 − β12N2

)
dN2

dt
= N2

(
α2 − β21N1 − β22N2

) , (1)

where N1 and N2 are the abundances of species 1 and 2; β11 and β22 are their intraspecific23

competition strengths; β12 and β21 are their interspecific competition strengths; and α124

and α2 are their intrinsic growth rates. An equilibrium point of the system is a pair of25
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abundances N∗
1 and N∗

2 that makes the right side of the ordinary differential equation1

system equal to zero.2

While the only condition necessary to guarantee the global stability of any feasible3

equilibrium point in this system is that the interspecific competition strengths are lower4

than the intraspecific ones (β12β21 < β11β22), the feasibility conditions are given by N∗
1 =5

β22α1−β12α3

β11β22−β12β21
> 0 and N∗

2 = β11α2−β21α1

β11β22−β12β21
> 0 (3, 4, 19). This implies that if we set, for6

example, β11 = β22 = 1, β12 = β21 = 0.5, α1 = 1, and α2 = 2 we fulfil the stability7

condition but not the feasibility condition, while if we set β11 = β22 = 0.5, β12 = β21 = 1,8

α1 = α2 = 1 we can satisfy the feasibility condition but not the stability one. To have9

a stable and feasible equilibrium point we need to set, for instance, β11 = β22 = 1,10

β12 = β21 = 0.5, and α1 = α2 = 1 (see Fig. 1 for a graphical illustration).11

The example above confirms the importance of verifying both the stability and the12

feasibility conditions of the equilibrium point when analyzing the stable coexistence of13

species (3–5, 19). Of course, we can always fine tune the parameter values of intrinsic14

growth rates such that the system is feasible (16, 17). This strategy, for example, has15

been used when studying the success probability of an invasive species (20). However,16

when fixing the parameter values of intrinsic growth rates, we are not any more studying17

the overall effect of interspecific interactions on the stable coexistence of species. Rather,18

we are answering the question of how interspecific interactions increase the persistence of19

species for a given parameterization of intrinsic growth rates. As we will show below, this20

is also the core of the problem in studies based on arbitrary numerical simulations.21

Numerical simulations22

Numerical simulations have provided an alternative and useful tool to explore species23

coexistence in large ecological systems where analytical solutions are precluded (3). Under24

this approach, one has as a prerequisite to parameterize the dynamical model, or a least25

to have a good estimate of the statistical distribution from which these parameters should26
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be sampled. However, if one chooses an arbitrary parameterization without an empirical1

justification, any study has a high chance of being inconclusive for real ecosystems since2

species persistence is strongly dependent on the chosen parameterization.3

To illustrate this point, let us simulate the dynamics of an ecological model (6) with4

three different parameterizations of intrinsic growth rates (21). Additionally, these simula-5

tions are performed over an observed mutualistic network of interactions between flowering6

plants and their pollinators located in Hickling Norfolk, UK (see Table S1), a randomized7

version of this observed network, and the observed network without mutualistic interac-8

tions (i.e., we assume that there is only competition among plants and among animals).9

Figure 2 shows that it is possible to find a set of intrinsic growth rates such that any10

network that we analyze is completely persistent and, at the same time, the alternative11

networks are less persistent.12

This observation has two important implications. First, this means that by using13

different parameterizations for the same dynamical model and network of interactions,14

one can observe from all to a few of the species surviving. Second, this means that each15

network has a limited range of parameter values under which all species coexist. Thus,16

by studying a specific parameterization, for instance, one could wrongly conclude that a17

random network has a higher effect on community persistence than an observed network,18

or vice versa (10–12). This sensitivity to parameter values clearly illustrates that the19

conclusions that arise from studies using arbitrary values in intrinsic growth rates are not20

about the effects of network architecture of species coexistence, but about which network21

architecture maximizes species persistence for that specific parameterization.22

The above remarks reveal that traditional studies focusing on either local stability or23

numerical simulations can lead to apparently contradictory results. Therefore, we need a24

different conceptual framework to unify results and seek for appropriate generalizations.25
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Structural stability1

Structural stability has been a general mathematical approach to study the behavior of2

dynamical systems. A system is considered to be structurally stable if any smooth change3

in the model itself or in the value of its parameters does not change its dynamical behavior4

(e.g., the existence of equilibrium points, limit cycles, or deterministic chaos) (22–25). In5

the context of ecology, an interesting behavior is the stable coexistence of species, i.e., the6

existence of an equilibrium point that is feasible and dynamically stable. For instance, in7

our previous two-species competition system, there is a restricted area in the parameter8

space of intrinsic growth rates that leads to a globally stable and feasible solution as long9

as ρ < 1 (white area in Fig. 3). Importantly, Figure 3 also reveals that the higher the10

competition strength ρ, the larger the size of this restricted area (19, 26). Therefore, a11

relevant question here is not only whether the system is structurally stable or not, but how12

large is the domain in the parameter space leading to the stable coexistence of species.13

To address the above question, here we recast the mathematical definition of structural14

stability to that in which a system is more structurally stable, the larger the area of15

parameter values leading to both a dynamically stable and feasible equilibrium (27–29).16

This means that a highly structurally stable ecological system is more likely to be stable17

and feasible by handling a wider range of conditions before the first species becomes18

extinct. Previous studies have used this approach in low-dimensional ecological systems19

(3, 19). Yet, due to its complexity, almost no study has fully developed this rigorous20

analysis for a system with an arbitrary number of species. A significant exception has21

been the use of structural stability to calculate an upper bound to the number of species22

that can coexist in a given community (6,30).23

Here, we introduce this extended concept of structural stability into community ecol-24

ogy to study the extent to which network architecture—strength and organization of25

interspecific interactions—modulates the range of conditions compatible with the sta-26

ble coexistence of species. As an empirical application of our framework, we study the27
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structural stability of mutualistic systems and apply it on a dataset of 23 quantitative1

mutualistic networks (Table S1). We surmise that observed network architectures increase2

the structural stability and in turn the likelihood of species coexistence as function of the3

possible set of conditions in an ecological system. We discuss the applicability of our4

framework to other types of interspecific interactions in complex ecological systems.5

Structural stability of mutualistic systems6

Mutualistic networks are formed by the mutually-beneficial interactions between flower-7

ing plants and their pollinators or seed dispersers (31). Importantly, these mutualistic8

networks have been shown to share a nested architectural pattern (32). This nested archi-9

tecture means that, typically, the mutualistic interactions of specialist species are proper10

subsets of the interactions of more generalist species (32). While it has been repeat-11

edly shown that this nested architecture may arise from a combination of life-history and12

complementarity constraints among species (32–35), the effect of this nested architecture13

on community persistence continues to be a matter of strong debate. On the one hand,14

it has been shown that a nested architecture can facilitate the maintenance of species15

coexistence (6), exhibit a flexible response to environmental disturbances (7, 8, 36), and16

maximize total abundance (12). On the other hand, it has also been suggested that this17

nested architecture can minimize local stability (9), have a negative effect on community18

persistence (10), and have a low resilience to perturbations (12). Not surprisingly, the19

majority of these studies have been based on either local stability or numerical simulations20

with arbitrary parameterizations (but see Ref. 6).21

Model of mutualism22

To study the structural stability and explain the apparently contradictory results found in23

studies of mutualistic networks, we first need to introduce an appropriate model describing24

the dynamics between and within plants and animals. We use the same set of differential25
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equations as in Ref. 6. We choose these dynamics because they are simple enough to1

provide analytical insights, and yet complex enough to incorporate key elements—such2

as saturating, functional responses (37, 38) and interspecific competition within a guild3

(6)—recently adduced as necessary ingredients for a reasonable theoretical exploration of4

mutualistic interactions. Specifically, the dynamical model has the following form:5


dPi

dt
= Pi

(
α

(P )
i −

∑
j β

(P )
ij Pj +

P
j γ

(P )
ij Aj

1+h
P

j γ
(P )
ij Aj

)
dAi

dt
= Ai

(
α

(A)
i −

∑
j β

(A)
ij Aj +

P
j γ

(A)
ij Pj

1+h
P

j γ
(A)
ij Pj

) , (2)

where the variables Pi and Ai denote the abundance of plant and animal species i, re-6

spectively. The parameters of this mutualistic system correspond to the values describing7

intrinsic growth rates (αi), intra-guild competition (βij), the benefit received via mutual-8

istic interactions (γij), and the saturating constant of the beneficial effect of mutualism9

(h), commonly known as the handling time. Since our main focus is on mutualistic10

interactions, we keep as simple as possible the competitive interactions for the sake of11

analytical tractability. In the absence of empirical information about interspecific compe-12

tition, we use a mean field approximation for the competition parameters (6), where we13

set β
(P )
ii = β

(A)
ii = 1 and β

(P )
ij = β

(A)
ij = ρ < 1 (i 6= j).14

Following Ref. 39, the mutualistic benefit can be further disentangled by γij =15 (
γ0yij

)
/
(
kδi
)
, where yij = 1 if species i and j interact and zero otherwise; ki is the number16

of interactions of species i; γ0 represents the level of mutualistic strength, and δ corre-17

sponds to the mutualistic trade-off. Recall that the mutualistic strength is the per-capita18

effect of a certain species on the per-capita growth rate of their mutualistic partners. The19

mutualistic trade-off modulates the extent to which a species that interacts with few other20

species does it strongly, while a species that interacts with many partners does it weakly.21

This trade-off has been justified on empirical grounds (40, 41). Importantly, the degree22

to which interspecific interactions yij are organized into a nested way can be quantified23

by the value of nestedness N introduced in Ref. 42.24
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We are interested in quantifying the extent to which network architecture (i.e., the1

combination of mutualistic strength, mutualistic trade-off, and nestedness) modulates the2

set of conditions compatible with the stable coexistence of all species, i.e., the structural3

stability. In the next sections, we explain how this problem can be split into two parts.4

First, we explain how the stability conditions can be disentangled from the feasibility5

conditions, as it has already been shown for the two-species competition system. Specif-6

ically, we show that below a critical level of mutualistic strength (γ0 < γr0), any feasible7

equilibrium point is granted to be globally stable. Second, we explain how network archi-8

tecture modulates the domain in the parameter space of intrinsic growth rates leading to9

a feasible equilibrium under the constraints of being globally stable (given by the level of10

mutualistic strength).11

Stability condition12

In this section, we investigate the conditions in our dynamical system that any feasible13

equilibrium point needs to satisfy to be globally stable. To derive these conditions, we14

start by studying the linear Lotka-Volterra approximation (i.e., h = 0) of the dynamical15

model (Equation 2). In this linear approximation, the model reads16 [
dP
dt
dA
dt

]
= diag

([
P
A

])([
α(P )

α(A)

]
−
[
β(P ) −γ(P )

−γ(A) β(A)

]
︸ ︷︷ ︸

:=B

[
P
A

])
, (3)

where the matrix B is a two-by-two block matrix embedding all the interaction strengths.17

Conveniently, the global stability of a feasible equilibrium point in this linear Lotka-18

Volterra model has already been studied (14–17, 43). Particularly relevant in here is19

remembering that an interaction matrix that is Lyapunov-diagonally stable grants the20

global stability of any potential feasible equilibrium (14–18).21

While it is mathematically difficult to verify the condition for Lyapunov-diagonal22

stability, it is known that for some classes of matrices, Lyapunov stability and Lyapunov-23

diagonal stability are equivalent conditions (44). Importantly, symmetric matrices and24
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Z-matrices (i.e., matrices whose off-diagonal elements are non-positive) belong to those1

classes of equivalent matrices. Note that our interaction strength matrix B is either sym-2

metric when the mutualistic trade-off is zero (δ = 0) or a Z-matrix when the interspecific3

competition is zero (ρ = 0). This means that as long as the real parts of all eigenvalues of4

B are positive (18), any feasible equilibrium point is globally stable. For instance, in the5

case of ρ < 1 and γ0 = 0, the interaction matrix B is symmetric and Lyapunov-diagonally6

stable since its eigenvalues are 1− ρ, (SA − 1)ρ+ 1, and (SP − 1)ρ+ 1.7

Note that for ρ > 0 and δ > 0, there are no analytical results yet demonstrating that8

Lyapunov-diagonal stability is equivalent to Lyapunov stability. However, after inten-9

sive numerical simulations, we conjecture that the two main consequences of Lyapunov-10

diagonal stability hold (45). Specifically, we state the following conjectures:11

Conjecture 1: if B is Lyapunov stable, then B is D-stable.12

Conjecture 2: if B is Lyapunov stable, then any feasible equilibrium is globally stable.13

Importantly, we find that for any given mutualistic trade-off and interspecific compe-14

tition, the higher the level of mutualistic strength, the smaller the maximum real part15

of the eigenvalues of B (45). This means that there is a critical value of mutualistic16

strength (γr) such that above this level the matrix B is not any more Lyapunov stable.17

To compute γr0, we just need to find the critical value of γ0 at which the real part of18

one of the eigenvalues of the interaction-strength matrix reaches zero (45). This implies19

that at least below this critical value γ0 < γr, any feasible equilibrium is granted to be20

locally and globally stable according to conjectures 1 and 2, respectively. Note that we21

can also grant the global stability of matrix B by the condition of being positive definite,22

which is even stronger than Lyapunov-diagonal stability (14). However, this condition23

imposes stronger constraints on the critical value of mutualistic strength than Lyapunov24

stability (39).25

Finally, we study the stability conditions for the nonlinear Lotka-Volterra system26

(Equation 2). While the theory has been developed for the linear Lotka-Volterra system,27
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we explain how it can be extended to the nonlinear dynamical system. To grant the1

stability of any feasible equilibrium (i.e., Pi > 0 and Ai > 0 for all i) in the nonlinear2

system, we need to show that the above stability conditions hold on the following two-3

by-two block matrix (14,43):4

Bnl :=

 β
(P )
ij − γ

(P )
ij

1+h
P

k γ
(P )
ik Ak

− γ
(A)
ij

1+h
P

k γ
(A)
ik Pk

β
(A)
ij

 . (4)

Note that Bnl differs from B only in the off-diagonal block with a decreased mutualistic5

strength. This implies that the critical value of mutualistic strength for the nonlinear6

Lotka-Volterra system is larger or equal than the critical value for the linear system7

(45). Therefore, the critical value γr derived from the linear Lotka-Volterra system (i.e.,8

from the matrix B) is already a sufficient condition to grant the global stability of any9

feasible equilibrium in the nonlinear case. However, this does not imply that above this10

critical value of mutualistic strength a feasible equilibrium is unstable. In fact, when the11

mutualistic-interaction terms are saturated (h > 0), it is possible to have feasible and12

locally stable equilibria for any level of mutualistic strength (39,45).13

Feasibility condition14

We highlight that for any interaction strength matrix B, whether it is stable or not, it15

is always possible to find a set of intrinsic growth rates such that the system is feasible16

(Fig. 2). To find this set of values, we just need to choose a feasible equilibrium point,17

such that the abundance of all species is greater than zero (A∗
i > 0 and P ∗

j > 0), and find18

the vector of intrinsic growth rates such that the right side of Equation 2 is equal to zero,19

i.e., α
(P )
i =

∑
j β

(P )
ij P ∗

j −
P

j γ
(P )
ij A∗

j

1+h
P

j γ
(P )
ij A∗

j

and α
(A)
i =

∑
j β

(A)
ij A∗

j −
P

j γ
(A)
ij P ∗

j

1+h
P

j γ
(A)
ij P ∗

j

. Note that20

this reconfirms that the stability and feasibility conditions are different and they need21

to be rigorously verified when studying the stable coexistence of species (3, 16, 17, 19).22

Importantly, this also highlights that the relevant question is not whether we can find a23

feasible equilibrium point, but how large is the domain of intrinsic growth rates leading24
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to a feasible and stable equilibrium point. We call this domain the feasibility domain.1

Since the parameter space of intrinsic growth rates is substantially large (RS, where S2

is the total number of species), an exhaustive numerical search of the feasibility domain3

is impossible. However, we can analytically estimate the center of this domain with what4

we call the structural vector of intrinsic growth rates. For example, in the two-species5

competition system of Figure 4A, the structural vector is the vector (in red), which is6

in the center of the domain leading to feasibility of the equilibrium point (white region).7

Note that any vector of intrinsic growth rates collinear to the structural vector guarantees8

the feasibility of the equilibrium point, i.e., guarantees species coexistence. Importantly,9

since the structural vector is the center of the feasibility domain then it is also the vector10

that can tolerate the strongest deviation before leaving the feasibility domain, i.e., before11

having at least one species going extinct.12

In mutualistic systems, we need to find a structural vector for animals and another13

one for plants. Recall that these structural vectors are the set of intrinsic growth rates14

that allow the strongest perturbations before leaving the feasibility domain. To find these15

structural vectors, we have to transform the interaction-strength matrix B to an effective16

competition framework (45). This results in an effective competition matrix for plants and17

a different one for animals (6), where these matrices represent respectively the apparent18

competition among plants and among animals once taking into account the indirect effect19

via their mutualistic partners. Note that with a non-zero mutualistic trade-off (δ > 0),20

the effective competition matrices are non-symmetric, and in order to find the structural21

vectors we have to use the singular decomposition approach, i.e., a generalization of the22

eigenvalues decomposition. This results in a left and a right structural vector for plants23

and for animals in the effective competition framework. Finally, we need to move back24

from the effective competition framework to obtain a left and right vector for plants (α
(P )
L25

and α
(P )
R ) and animals (α

(A)
L and α

(A)
R ) in the observed mutualistic framework. The full26

derivation is provided in the SM (45).27
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Once we locate the center of the feasibility domain with the structural vectors, we1

can approximate the boundaries of this domain by quantifying the amount of variation2

from the structural vectors allowed by the system before having any of the species go-3

ing extinct, i.e., before losing the feasibility of the system. To quantify this amount,4

we introduce proportional random perturbations to the structural vectors, generate nu-5

merically the new equilibrium points (21), and measure the angle or the deviation be-6

tween the structural vectors and the perturbed vectors (for a graphical example see7

Fig. 4A). The deviation from the structural vectors is quantified, for the plants, by8

ηP (α(P )) =
(

1 − cos(θ
(P )
L ) cos(θ

(P )
R )
)
/
(

cos(θ
(P )
L ) cos(θ

(P )
R )
)

, where θ
(P )
L and θ

(P )
R are, re-9

spectively, the angles between α(P ) and α
(P )
L and between α(P ) and α

(P )
R . Note that α(P ) is10

any perturbed vector of intrinsic growth rates of plants. The deviation from the structural11

vector of animals is computed similarly.12

Importantly, Figure 4B shows that the larger is the deviation of the perturbed intrinsic13

growth rates from the structural vectors, the lower is the persistence of the community14

as defined by the fraction of surviving species. This confirms that there is a restricted15

domain of intrinsic growth rates centered on the structural vectors compatible with the16

stable coexistence of species. The higher the tolerated deviation from the structural17

vectors within which all species coexist, the higher the feasibility domain, and in turn the18

higher the structural stability of the system.19

Network architecture and structural stability20

To investigate the extent to which network architecture modulates the structural stability21

of mutualistic systems, we explore the combination of alternative network architectures22

(i.e., combinations of nestedness, mutualistic strength, and mutualistic trade-off) and23

their corresponding feasibility domains.24

To explore these combinations, for each observed mutualistic network (see Table S1),25

we obtain 250 different model-generated nested architectures by using an exhaustive re-26
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sampling model (46) that preserves the number of species and the expected number of1

interactions (45). Theoretically, nestedness ranges from 0 to 1 (42). However, if one im-2

poses architectural constraints such as preserving the number of species and interactions,3

the effective range of nestedness that the network can exhibit may be smaller (45). Addi-4

tionally, each individual model-generated nested architecture is combined with different5

levels of mutualistic trade-off δ and mutualistic strength γ0. For the mutualistic trade-off,6

we explore values δ ∈ [0, . . . , 1.5] with steps of 0.05 that allow us to explore sub-linear,7

linear, and superlinear trade-offs. Note that the case δ = 0 is equivalent to the soft8

mean field approximation studied in Ref. 6. Recall that for each combination of network9

of interactions and mutualistic trade-off, there is a unique critical value γr0 in the level10

of mutualism strength γ0 up to which any feasible equilibrium is globally stable. This11

critical value γr0 is dependent on the mutualistic trade-off and nestedness. However, the12

mean mutualistic strength γ̄ = 〈γij〉 shows no pattern as function of mutualistic trade-off13

and nestedness (45). Therefore, we explore values of γ0 ∈ [0, . . . , γr0] with steps of 0.0514

and calculate the new generated mean mutualistic strengths. This produced a total of15

250 × 589 different network architectures (nestedness, mutualistic trade-off, and mean16

mutualistic strength) for each observed mutualistic network.17

We quantify how the structural stability (feasibility domain) is modulated by these18

alternative network architectures in the following way. First, we compute the structural19

vectors of intrinsic growth rates that grant the existence of a feasible equilibrium of each al-20

ternative network architecture. Second, we introduce proportional random perturbations21

to the structural vectors of intrinsic growth rates, and measure the angle or deviation22

between the structural vectors and the perturbed vectors (η(A),η(P )). Third, we simu-23

late species abundance using the mutualistic model of Ref. 6 and the perturbed growth24

rates as intrinsic growth rate parameter values (21). These deviations lead to parameter25

domains from all to a few species surviving (Fig. 4).26

Finally, we quantify the extent to which network architecture modulates structural27
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stability by looking at the association of community persistence with network architecture1

parameters, once taking into account the effect of intrinsic growth rates. Specifically, we2

study this association using the partial fitted values from a binomial regression (47) of3

the fraction of surviving species on nestedness (N), mean mutualistic strength (γ̄), and4

mutualistic trade-off (δ), while controlling for the deviations from the structural vectors5

of intrinsic growth rates (η(A),η(P )). The full description of this binomial regression and6

the calculation of partial fitted values are provided in Note 48. Note that these partial7

fitted values are the contribution of network architecture to the logit of the probability8

of species persistence, and in turn, these values are positively proportional to the size of9

the feasibility domain.10

Results11

We analyze each observed mutualistic network independently since network architecture12

is constrained to the properties of each mutualistic system (11). For a given pollination13

system located in the KwaZulu-Natal region of South Africa, Figure 5 shows the extent14

to which its network architecture modulates structural stability. Specifically, the figure15

plots the partial fitted values as a function of network architecture. Importantly, Figure16

5A shows that not all architectural combinations have the same structural stability. In17

particular, the architectures that maximize structural stability (reddish/darker regions)18

correspond to the following properties: (i) a maximal level of nestedness, (ii) a small19

(sub-linear) mutualistic trade-off, and (iii) a high level of mutualistic strength within the20

constraint of any feasible solution being globally stable (49).21

Importantly, a similar pattern is present in all the 23 observed mutualistic networks22

(45). For instance, using three different levels of interspecific competition (ρ = 0.2, 0.4, 0.6)23

we always find that structural stability is positively associated with nestedness and mu-24

tualistic strength (45). Similarly, structural stability is always associated with the mu-25

tualistic trade-off by a quadratic function, leading quite often to an optimal value for26

15



maximizing structural stability (45). These findings reveal that under the given charac-1

terization of interspecific competition, there is a general pattern of network architecture2

that increases the structural stability of mutualistic systems.3

Yet, one question remains to be answered: is the network architecture that we observe4

in nature close to the maximum feasibility domain of parameter space under which species5

coexist? To answer this question, we compare the observed network architecture with the-6

oretical predictions. To extract the observed network architecture, we compute the ob-7

served nestedness from the observed binary interaction matrices (Table S1) following Ref.8

42. The observed mutualistic trade-off δ is estimated from the observed number of visits9

of pollinators or fruits consumed by seed-dispersers to flowering plants (41, 50, 51). The10

full details on how to compute the observed trade-off is provided in Note 52. Since there11

is no empirical data on the relationship between competition and mutualistic strength12

that could allow us to extract the observed mutualistic strength γ0, our results on nest-13

edness and mutualistic trade-off are calculated across different levels of mean mutualistic14

strength.15

Figures 5B-D show that the observed network (blue solid lines) of the mutualistic16

system located in the grassland asclepiads of South Africa actually appears to have an17

architecture close to the one that maximizes the feasibility domain under which species18

coexist (reddish/darker region). To formally quantify the degree to which each observed19

network architecture is maximizing the set of conditions under which species coexist, we20

compare the net effect of the observed network architecture on structural stability against21

the maximum possible net effect. The maximum net effect is calculated in three steps.22

First, as outlined in the previous section, we compute the partial fitted values of23

the effect of alternative network architectures on species persistence (48). Second, we24

extract the range of nestedness allowed by the network given the number of species and25

interactions in the system (45). Third, the maximum net effect of network architecture26

on structural stability is computed by finding the difference between the maximum and27

16



minimum partial fitted values within the allowed range of nestedness and mutualistic1

trade-off between δ ∈ [0, . . . , 1.5]. Note that all the observed mutualistic trade-offs have2

values between δ ∈ [0, . . . , 1.5]. Finally, the net effect of the observed network architecture3

on structural stability corresponds to the difference between the partial fitted values for4

the observed architecture and the minimum partial fitted values extracted in the third5

step described above.6

Looking across different levels of mean mutualistic strength, Figure 6 shows that in7

the majority of cases (18 out of 23, P=0.004, binomial test), the observed network ar-8

chitectures induce more than half the value of the maximum net effect on structural9

stability (red solid line). These findings reveal that observed network architectures tend10

to maximize the range of parameter space—structural stability—for species coexistence.11

Structural stability of systems with other interaction12

types13

In this section we explain how our structural stability framework can be applied to other14

types of interspecific interactions in complex ecological systems. We first explain how15

structural stability can be applied to competitive interactions. We proceed by discussing16

how this competitive approach can be used to study trophic interactions in food webs.17

For a competition system with an arbitrary number of species, we can assume a stan-18

dard set of dynamical equations given by dNi

dt
= Ni(αi −

∑
j βijNj), where αi > 0 are19

the intrinsic growth rates, βij > 0 are the competition interaction strengths, and Ni is20

the abundance of species i. Recall that the Lyapunov-diagonal stability of the interac-21

tion matrix β would imply the global stability of any feasible equilibrium point. How-22

ever, in non-symmetric competition matrices, Lyapunov stability does not always imply23

Lyapunov-diagonal stability (53). This establishes that we should work with a restricted24

class of competition matrices such as the ones derived from the niche space of Ref. 54.25

Indeed, it has been demonstrated that this class of competition matrices are Lyapunov-26

17



diagonally stable, and this stability is independent on the number of species (55). For1

a competition system with a symmetric interaction-strength matrix, the structural vec-2

tor is equal to its leading eigenvector. For other appropriate classes of matrices, we can3

compute the structural vectors in the same way as we did with the effective competition4

matrices of our mutualistic model, and numerically simulate the feasibility domain of the5

competition system. In general, following this approach, we can verify that the lower is6

the average interspecific competition, the larger is the feasibility domain, and in turn the7

higher is the structural stability of the competition system.8

In the case of predator-prey interactions in food webs, so far there is no analytical9

work demonstrating the conditions for a Lyapunov-diagonally stable system and how10

this is linked to its Lyapunov stability. Moreover, the computation of the structural11

vector of an antagonistic system is not a straightforward task. However, we may have a12

first insight about how the network architecture of antagonistic systems modulates their13

structural stability by transforming a 2-trophic-level food web into a competition system14

among predators. Using this transformation, we are able to verify that the higher is15

the compartmentalization of a food web, the higher is its structural stability (results16

not shown). In conclusion, there is no universal rule to study the structural stability17

of complex ecological systems. Each type of interaction poses their own challenges as18

function of their specific population dynamics.19

Discussion20

Here, we have investigated the extent to which different network architectures of mutual-21

istic systems can provide a wider range of conditions under which species coexist. Note22

that this research question is completely different from the question of which network23

architectures are aligned to a fixed set of conditions. Previous numerical analysis based24

on arbitrary parameterizations were indirectly asking the latter, and previous studies25

based on local stability were not rigorously verifying the actual coexistence of species. Of26

18



course, if there is a good empirical or scientific reason to use a specific parameterization,1

then we should take advantage of this. However, as the set of conditions present in a2

community can be constantly changing based on stochasticity, adaptive mechanisms, or3

global environmental change, we believe that understanding which network architectures4

can increase the structural stability of a community becomes a relevant question. Indeed,5

this is a question much more aligned with the challenge of assessing the consequences of6

global environmental change—by definition directional and large— than the alternative7

framework of linear stability, focusing on the responses of a steady state to infinitesimally8

small perturbations.9

We advocate structural stability as an integrative approach to provide a general assess-10

ment of the implications of network architecture across ecological systems. Interestingly,11

our findings show that many of the observed mutualistic network architectures tend to12

maximize the domain of parameter space under which species coexist. This means that in13

mutualistic systems, both a nested network architecture and a small mutualistic trade-off14

are one of the most favorable structures for community persistence. Our predictions could15

be tested experimentally by exploring whether communities with an observed network16

architecture that maximizes structural stability stand higher values of perturbation. Sim-17

ilarly, our results open up new questions such as what the reported associations between18

network architecture and structural stability tell us about the evolutionary processes and19

pressures occurring in ecological systems.20

Although the framework of structural stability has not been as dominant in theoretical21

ecology as the concept of local stability, it has a long tradition in other fields of research22

(29). For example, it has been key in evolutionary developmental biology to articulate23

the view of evolution as the modification of a conserved developmental program (27,24

28). Thus, some morphological structures are much more common than others because25

they are compatible with a wider range of developmental conditions. This provided a26

more mechanistic understanding of the generation of form and shape through evolution27

19



(56) than that provided by a historical, functionalist view. We believe ecology can also1

benefit from this structuralist view. The analogous question here would assess whether2

the invariance of network architecture across diverse environmental and biotic conditions3

is due to the fact that it is the one increasing the likelihood of species coexistence in an4

ever-changing world.5
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Figure captions

• Fig. 1. Stability and feasibility of a two-species competition system. For the same

parameters of competition strength (which grant the global stability of any feasible

equilibrium), panels A, B, and C represent the two isoclines of the system. Their

intersection gives the equilibrium point of the system (3,19). Scenario A leads to a

feasible equilibrium (both species have positive abundances at equilibrium), while

in scenarios B and C the equilibrium is not feasible (one species has a negative

abundance at equilibrium). Panel D represents the area of feasibility in the the

parameter space of intrinsic growth rates, under the condition of global stability.

This means that when the intrinsic growth rates of species are chosen within the

white area, the equilibrium point is globally stable and feasible. In contrast, when

the intrinsic growth rates of species are chosen within the green area, the equilibrium

point is not feasible. Points A-C indicate the parameter values corresponding

• Fig. 2. Numerical analysis of species persistence as a function of model param-

eterization. This figure shows the simulated dynamics of species abundance and

the fraction of surviving species (positive abundance at the end of the simulation)

using the mutualistic model of Ref. 6. Simulations are performed using an empiri-

cal network located in Hickling Norfolk, UK (see Table S1), a randomized version

of this network using the probabilistic model of Ref. 32, and the network without

mutualism (only competition). Each row corresponds to a different set of growth

rate values. Note that it is always possible to choose the intrinsic growth rates such

that all species are persistent in each of the three scenarios and, at the same time,

the community persistence defined as the fraction of surviving species is lower in

the alternative scenarios.

• Fig. 3. Structural stability in a two-species competition system. The figure shows
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how the range of intrinsic growth rates leading to the stable coexistence of the two

species (white region) changes as a function of the competition strength. Decreasing

interspecific competition, from panel A to D, increases the area of feasibility, and in

turn the structural stability of the system. Here, β11 = β22 = 1, and β12 = β21 = ρ.

Our goal is extending this analysis to realistic networks of species interactions.

• Fig. 4. Deviation from the structural vector and community persistence. On panel

A, we show the structural vector of intrinsic growth rates (in red) for the two-species

competition system of Fig. 1. The structural vector is the vector in the center of

the domain leading to the feasibility of the equilibrium point (white region), and

thus can tolerate the largest deviation before any of the species goes extinct. The

deviation between the structural vector and any other vector (in blue) is quantified

by the angle between them. On panel B, we show the effect of the deviation from

the structural vector on intrinsic growth rates on community persistence defined as

the fraction of model-generated surviving species. The example corresponds to an

observed network located in North Carolina, USA (see Table S1) with a mutualistic

trade-off δ = 0.5, and a maximum level of mutualistic strength γ0 = 0.2402. Blue

symbols represent the community persistence and the surface represents the fit of a

logistic regression (R2 = 0.88).

• Fig. 5. Structural stability in complex mutualistic systems. For an observed mutu-

alistic system with 9 plants, 56 animals, and 103 mutualistic interactions located in

the grassland asclepiads in South Africa (see Table S1) (58), (A) corresponds to the

effect—colored by partial fitted residuals—of the combination of different architec-

tural values (nestedness, mean mutualistic strength, and mutualistic trade-off) on

the domain of structural stability. The reddish/darker the color, the larger the pa-

rameter space compatible with the stable coexistence of all species, and in turn the
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larger the domain of structural stability. (B), (C), and (D) correspond to different

slices of (A). Slice (B) corresponds to a mean mutualistic strength of 0.21, slice

(C) corresponds to the observed mutualistic trade-off, and slice (D) corresponds to

the observed nestedness. Solid lines correspond to the observed values of nestedness

and mutualistic trade-offs.

• Fig. 6. Net effect of network architecture on structural stability. For each of the 23

observed networks (Table S1), we show how close is the observed feasibility domain

(partial fitted residuals) as function of the network architecture to the theoretical

maximal feasibility domain. The network architecture is given by the combination

of nestedness and mutualistic trade-off (x-axis) across different values of mean mu-

tualistic strength (y-axis). The solid red and dashed black lines correspond to the

maximum net effect and observed net effect, respectively. In 18 out of 23 networks

(indicated by the asterisk), the observed architecture exhibits more than half the

value of the maximum net effect (gray regions). Note that the net effect of each

network architecture is system-dependent and cannot be used to compare across

networks.

29


