SiGe quantum dots for fast hole spin Rabi oscillations

Citation: Applied Physics Letters 103, 263113 (2013); doi: 10.1063/1.4858959
View online: http://dx.doi.org/10.1063/1.4858959
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/103/26?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Hexagonal SiGe quantum dots and nanorings on Si(110)
J. Appl. Phys. 107, 056103 (2010); 10.1063/1.3309773

Periodic arrays of epitaxial self-assembled SiGe quantum dot molecules grown on patterned Si substrates
J. Appl. Phys. 100, 084312 (2006); 10.1063/1.2358003

Three-dimensional simulations of self-assembly of hut-shaped Si–Ge quantum dots
J. Appl. Phys. 95, 7813 (2004); 10.1063/1.1751640

Electrically isolated SiGe quantum dots
Appl. Phys. Lett. 80, 4626 (2002); 10.1063/1.1484251

SiGe quantum dots prepared on an ordered mesoporous silica coated Si substrate

[Advertisement]

Automate your set-up with Miniature Linear Actuators
www.zaber.com
SiGe quantum dots for fast hole spin Rabi oscillations

N. Ares,1 G. Katsaros,2,3,7 V. N. Golovach,2,4,5 J. J. Zhang,2 A. Prager,1 L. I. Glazman,6 O. G. Schmidt,2,7 and S. De Franceschi1

1SPSMS/LaTEQS, CEA-INAC/UJF-Grenoble 1, 17 Rue des Martyrs, 38054 Grenoble Cedex 9, France
2Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden, Germany
3Johannes Kepler University, Institute of Semiconductor and Solid State Physics, Altenbergerstr. 69, 4040 Linz, Austria
4Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU) and Donostia International Physics Center
DIPC, E-20018 San Sebastián, Spain
5KERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain
6Department of Physics, Yale University, New Haven, Connecticut 06520, USA
7Center for Advancing Electronics Dresden, TU Dresden, Germany

(Received 12 August 2013; accepted 10 December 2013; published online 30 December 2013)

We report on hole g-factor measurements in three terminal SiGe self-assembled quantum dot devices with a top gate electrode positioned very close to the nanostructure. Measurements of both the perpendicular as well as the parallel g-factor reveal significant changes for a small modulation of the top gate voltage. From the observed modulations, we estimate that, for realistic experimental conditions, hole spins can be electrically manipulated with Rabi frequencies in the order of 100 MHz. This work emphasises the potential of hole-based nano-devices for efficient spin manipulation by means of the g-tensor modulation technique. © 2013 AIP Publishing LLC.

Important progress has been made in the past years in the coherent manipulation of confined spins in semiconductor quantum dots (QDs) by means of oscillating magnetic and electric fields.1,2 Spin states can be electrically manipulated either by electric-dipole spin resonance (EDSR)3–5 or by the so-called g-tensor modulation technique.6,7

The EDSR technique is based on the fact that the ac electric field shifts the orbital wavefunction back and forth; in an external static magnetic field, due to the presence of a strong spin-orbit coupling, this oscillatory motion induces coherent spin rotations. On the other hand, in the g-tensor modulation technique, spin rotations result from an electrically induced oscillation of the Zeeman vector. Electrically tunable g-factors are thus essential for this technique.

In the past decade, g-factors in different QD systems have been studied thoroughly.8–14 Recently, Deacon et al.8 reported electrically tunable electron g-factors for self-assembled InAs nanocrystals (NCs) and estimated the electron Rabi frequency for their double-gate geometry. Since the gates were positioned rather far from the NCs, however, the resulting Rabi frequencies were estimated to be only around 2 MHz.

Interestingly, holes had not been considered as potential qubits for a long time, since their spin relaxation times were expected to be very short due to the strong spin-orbit (SO) interaction. In spite of the presence of hyperfine interaction and SO coupling, however, experiments with InGaAs QDs have shown spin relaxation times, T1, as high as several hundreds of microseconds.15 Since in the absence of hyperfine interaction,16 the spin decoherence time, T2, is predicted to be equal to 2T1, hole-confinement QDs based on isotopically purified SiGe nanostructures are promising candidates for spin qubits with long coherence times.

Hole-confinement QDs have been realized in Ge/Si core/shell nanowires,17,18 where hole spin relaxation times in the order of 1 ms were recently reported.19 In order to realize hole-based spin qubits in these systems, the development of all-electrical efficient techniques for fast spin rotations is essential,20 because time-dependent magnetic fields are inefficient at inducing Rabi oscillations for holes.21

In this work we have studied holes confined in SiGe NCs. We have placed a top gate 6–7 nm away from the NCs, which allows us to electrically tune the g-factor of the hole state. Placing a top gate so close to the NC has several advantages. First, as the coupling to the QD is very strong, driving of the spin states with Rabi frequencies of the order of 100 MHz can be achieved. In addition, as the gate can be very narrow, its action is local and the dissipation of the high-frequency power is minimized.

The SiGe self-assembled NCs used in this study were grown on undoped (n-) Si(001) wafers. The NCs were contacted by aluminium leads (see Fig. 1(a)) and the top gates were created by depositing 6 nm of hafnia on top of the obtained devices, followed by deposition of Ti/Pt 10/90 nm metal electrodes. Low-temperature transport measurements were carried out in a dilution refrigerator with a base temperature of 15 mK equipped with accurately filtered wiring and low-noise electronics. A typical differential conductance (dI/dVsd) measurement as a function of the top-gate (Vtg) and source-drain (Vsd) voltages is shown in Fig. 1(b). A small magnetic field, B = 70 mT, is applied in order to suppress the superconductivity of the Al electrodes.

Diamond-shaped regions with a charging energy of about 2 meV can be observed in Fig. 1(b). In the Coulomb blockade regime, single-hole transport is suppressed and electrical conduction is due to second-order cotunneling (CT) processes.22 Each CT process involves a hole tunneling out of the QD into the right contact and, simultaneously, another hole entering the QD from the left contact. At small Vsd, CT is said to be elastic since it cannot create any excitation in the QD. At sufficiently large Vsd, however, CT processes can leave the QD...
in an excited state. Such processes are thus referred to as inelastic. Both diamonds shown here show such inelastic CT features, visible as steps in $\delta I_d/\delta V_{sd}$. From the position of the inelastic CT step, we conclude that the orbital level separation for this device is about 200 μeV.

In order to determine the even or odd occupation of each diamond, we performed CT spectroscopy measurements as a function of an applied magnetic field, B. These measurements are shown in Figs. 1(c) and 1(d), for the left and right diamond, respectively. A clearly different behaviour is observed, revealing the distinct character of the ground states in the two adjacent diamonds. These different behaviours of the CT steps as a function of B, already reported in Ref. 13, is attributed to a left (right) diamond corresponding to an odd (even) number of charges.

The differential conductance of the odd diamond was studied further in order to gain more insight into the Zeeman-split Kramer doublets. Figs. 2(a) and 2(b) show a stability diagram of this diamond for $B = 0.6 T$ applied perpendicular and parallel to the growth plane, respectively. Steps due to the Zeeman–split Kramer levels are present in (d), implying an even number of confined holes.13 In (c) transitions between two splitted Kramer levels are observed, indicating an odd number of localized holes. Transitions between singlet and triplet states are present in (d), implying an even number of confined holes.13

Let us now remark on the fact that in both diamonds in Figs. 2(a) and 2(b), the inelastic CT steps are not parallel to the V_{tg} axis. This slope in the CT steps demonstrates that both g-factors values are voltage and thus electric-field dependent. From the reported measurements we extract $\frac{\partial g_{\perp}}{\partial V_{sd}} = (0.008 \pm 0.001) \frac{1}{mV}$ and $\frac{\partial g_{\parallel}}{\partial V_{sd}} = (0.007 \pm 0.001) \frac{1}{mV}$.

In order to estimate the Rabi frequency, we consider an oscillating voltage V_{ac} superimposed to a constant value V_{tg}. Provided that V_{ac} is sufficiently small, the dependence of g_{\parallel} and g_{\perp} on V_{tg} can be assumed to be linear and the Rabi frequency of the induced spin rotations reads (see supplementary material for the derivation of this expression22)

$$f_R = \frac{\mu_B V_{ac}}{2\hbar} \left[\frac{g_{\parallel}}{g_{\parallel} \frac{\partial g_{\parallel}}{\partial V_{tg}}} - \frac{1}{g_{\perp} \frac{\partial g_{\perp}}{\partial V_{tg}}} \right] \times \frac{g_{\parallel} g_{\perp} B_{\perp}}{r_{\perp} B_{\perp}^2 + (g_{\perp} B_{\perp})^2},$$

where \hbar is the Planck constant. In this expression, $B_{\parallel} = B \cos \theta$ and $B_{\perp} = B \sin \theta$, where the angle θ is measured with respect to the growth plane. Further, it can be shown that f_R is maximal if θ is chosen such that

$$\theta_{\text{max}} = \arctan \left(\frac{g_{\perp}}{g_{\parallel}} \right).$$

The experimental values obtained for g_{\parallel}, g_{\perp}, $\frac{\partial g_{\parallel}}{\partial V_{tg}}$ and $\frac{\partial g_{\perp}}{\partial V_{tg}}$, were used to estimate f_R for a given value of the Larmor frequency (f_L) and for different values of θ (see Fig. 3).

By considering a driving frequency $f_L \approx 20$ GHz, which corresponds to $B \approx 0.9 T$ applied at an angle θ_{max}, we obtain a Rabi frequency $f_R \approx 100$ MHz for $V_{ac} \approx 7 mV$. Taking the
lever-arm parameter of the gate electrode,24 $x \approx 0.07$, this value of V_{ac} corresponds to an energy shift of ≈ 500µeV, which is of the same order of typical energy-level modulations in EDSR experiments.5,25 We note that the estimated value for the Rabi frequency is comparable to values recently reported for electrons confined in InSb nanowires.25

In summary, we have demonstrated that a single top-gate electrode, defined close to a SiGe self-assembled NC, may enable us to perform spin manipulations by means of the g-tensor modulation technique. Our measurements demonstrate that fast Rabi frequencies can be achieved for realistic experimental conditions. The obtained values together with the expectedly long spin coherence times for carriers in Ge underline the potential of holes confined in SiGe NCs as fast spin qubits.

We acknowledge the financial support from the Nanosciences Foundation (Grenoble, France), the Commission for a Marie Curie Carrer Integration Grant, the Austrian Science Fund (FWF) for a Lise-Meitner Fellowship (M1435-N30), the DOE under Contract No. DE-FG02-08ER46482 (Yale), the European Starting Grant program, and the Agence Nationale de la Recherche. The authors thank J.W.G. van den Berg and S. Nadj-Perge for useful discussions.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig3.png}
\caption{Rabi frequency dependence on the magnetic field angle with respect to the substrate plane (θ). It reaches ≈ 100MHz at $\theta_{\text{opt}} \approx 38^\circ$. The estimated value corresponds to $B = 0.9$T and $V_{ac} = 7$ mV. Inset: Larmor frequency as a function of θ for the same experimental conditions. A driving frequency of ≈ 20GHz is estimated for $B = 0.9$T.}
\end{figure}

1R. Hanson, L. Kouwenhoven, J. Petta, S. Tarucha, and L. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).
17See supplementary material at http://dx.doi.org/10.1063/1.4858959 for the derivation of this expression.
18The lever arm of a gate electrode is the factor that relates a change of gate voltage to a corresponding shift of the subband energies.