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ABSTRACT  

For several years now, nanoscaled materials are being implemented in biotechnological 

applications related to animal (in particular human) cells and related pathologies. 

However, the use of nanomaterials in plant biology is far less widespread, although their 

application in this field could lead to the future development of plant biotechnology 

applications. For any practical use, it is crucial to elucidate the relationship between the 

nanomaterials and the target cells. In this work we have evaluated the behaviour of two 

types of nanomaterials, quantum dots and superparamagnetic nanoparticles, on 

Fusarium oxysporum, a fungal species that infects an enormous range of crops causing 

important economic losses and is also an opportunistic human pathogen. Our results 

indicated that both nanomaterials rapidly interacted with the fungal hypha labeling the 

presence of the pathogenic fungus, although they showed differential behaviour with 

respect to internalization. Thus, whereas magnetic nanoparticles appeared to be on the 

cell surface, quantum dots were significantly taken up by the fungal hyphae showing 

their potential for the development of novel control approaches for F. oxysporum and 

related pathogenic fungi following appropriate functionalization. In addition, the fungal 

germination and growth, accumulation of ROS, indicative of cell stress, and fungal 

viability have been evaluated at different nanomaterial concentrations showing the low 

toxicity of both types of nanomaterials to the fungus. This work represents the first 

study on the behavior of quantum dots and superparamagnetic particles on fungal cells, 

and constitutes the first and essential step to address the feasibility of new 

nanotechnology-based systems for early detection and eventual control of pathogenic 

fungi.  
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1. INTRODUCTION 

Members of the Fusarium oxysporum complex are well known soilborne plant 

pathogens responsible for economically devastating vascular wilts of an enormous 

range of agronomically important plant hosts1. In addition, this fungus is an 

opportunistic pathogen of immunocompromised patients2 that during deeply invasive 

infections of persistently neutropenic individuals causes 100% mortality. From an 

agronomical point of view, no completely effective treatments are available for this 

pathogen or related soil borne pathogens. The only effective control measure is soil 

sterilization, which is too costly for most farmers. Some control is achieved with 

fungicides. However, once wilt symptoms appear it is usually too late to apply an 

effective treatment3 and, indiscriminate application of these fungicides leaves 

problematic residues both in the soil and fruit tissues4. Methods based on polymerase 

chain reactions have been developed to detect the fungus5. However, these are not ready 

to use in the field, are costly and require a relatively large amount of the fungus, 

indicative of advanced infection, to be detected. Thus, new highly sensitive methods for 

the early detection and/or effective control of this disease are required.   

 

Recent decades have witnessed considerable research interest in the potential 

applications of nanoscaled materials in biological systems and despite having several 

advantages, they also have limitations. Their use in biological applications strongly 

depends on their possible cytotoxicity and on their transport through biological 

membranes and, in the case of fungi, also through the cell wall. Of the many 

nanoparticulate materials developed over the last 20 years, inorganic nanoparticles have 

been used for many applications6-7. A wide range of inorganic nanoparticles have been 

prepared and include noble metals, magnetic materials, and semiconductor nanocrystals, 
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which, because of their size (typically in the range between 1 and 200 nm), have 

physical properties of interest for the development of novel sensing and diagnostic 

tools, as well as innovative therapeutic strategies6,8-9. Semiconductor nanocrystals, or 

quantum dots (QDs), are typically composed of a cadmium selenide (CdSe) core and a 

zinc sulphide (ZnS) shell. The wide adoption of QDs as imaging tools in biology and 

medical research stems from the fact that they readily penetrate cells without losing 

their unique photophysical properties, such as superior photoemission and high 

photostability10-11. Among magnetic nanoparticles (MNPs), magnetic iron oxide 

nanoparticles are widely used. These structures are biocompatible, and by tailoring their 

size, their magnetic behaviour can be varied from ferrimagnetic to superparamagnetic, 

thereby making them suitable for an ample range of biomedical and biotechnological 

applications, such as contrast agents for magnetic resonance imaging and the 

magnetically targeted delivery of bioactive molecules12-13, as magnetic labels in 

biosensors14 and as nanosorbents and photocatalysts in environmental clean-up 

technologies15-16. The above mentioned characterisitics make both QDs and MNPs 

promising tools for novel applications in plant biology and plant biotechnology, similar 

to those already developed in the field of biomedicine 

 

In order to address the potential of QDs and MNPs for the future development of 

new and more effective strategies to fight against this pathogen we studied the 

interaction between these nanomaterials and the F. oxysporum cells. We evaluated their 

internalization (paying special attention to the fungal cell wall) and toxicity on F. 

oxysporum cells, at different concentrations. From an agronomical point of view, in-

depth knowledge of the behaviour of the fungus in the presence of the nanomaterials is 

crucial to outline the toxicity profile of these particles. This is particularly relevant in 
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the case of F. oxysporum, since in addition to other beneficial fungal spp. present in the 

rhizosphere, specific non-pathogenic F. oxysporum strains have been reported to 

cohabit with the pathogenic strains exerting biological control17.  In order to improve 

the stability of these inorganic nanomaterials in biological suspensions, QDs were 

coated with 3-mercaptopropionic acid (MPA-QDs) and MNPs with aminated silica18 

(SiO2-MNPs). Fluorescently labelled protein G was also used to decorate the surface of 

the MNPs as a hook for future functionalization for further research purposes. For 

future detection and control purposes, out of the scope of this paper, the appropriate 

nano-sized materials will have to be functionalized with the suitable biomolecule able to 

selectively target the pathogenic formae specialis, but only after internalization and 

toxicity studies, such as the presented in this work. Since fungal cells show 

commonalities in composition and structure, the methodology presented here could be 

relatively easily extrapolated to other phytopathogenic fungi. 

 

2. EXPERIMENTAL SECTION  

2.1. Fungal isolates and culture conditions 

F. oxysporum f.sp. lycopersici (Fol) race 2 wild type strain 4287 (FGSC 9935) was 

used in all the experiments. The fungal strain was stored as microconidial suspensions 

in 30% glycerol at –80 ºC. For microconidia production, cultures were grown in potato 

dextrose broth (PDB; Difco, Detroit, MI) at 28 ºC with shaking at 170 rpm19. To 

evaluate the potential toxicity of both nanomaterials 5 x 106 microconidia were grown 

for 16 h at 28 ºC under agitation at 170 rpm in 1 ml of liquid minimum medium (MM)20 

supplemented with either MPA-QDs at a concentration of 10, 50, 100 or 500 nM or 

SiO2-MNPs at 25, 50, 100 and 500 µg ml-1. To monitor their internalization, 5 x 106 

microconidia were grown for 16 h at 28 ºC under agitation at 170 rpm in 1 ml of liquid 
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MM. For long-term internalization studies, the MPA-QDs and the SiO2-MNPs were 

added at the time of Fol inoculation while for short-term internalization, they were 

added to the MM after 16 h of growth and incubated for a further 10 min or 3 h before 

visualization.   

 

2.2. Nanomaterials synthesis 

CdSe/ZnS core shell QDs  

All chemicals were obtained from Sigma-Aldrich, unless otherwise indicated, 

and used as received. UV-vis absorbance spectra were taken using a Beckman DU-70. 

Photoluminescence spectra were recorded with a SPEX Fluorolog spectrofluorimeter. 

TOPO/HDA-capped CdSe nanocrystals were synthesized using standard procedures as 

previously described21-22. Briefly, CdSe nanocrystals with the first absorption peak 

around 580-590 nm and a diameter of 3.6-4.5 nm were first generated and then 

passivated with 5 monolayers of ZnS. Passivation was achieved using the SILAR 

method23, which consists of alternating injections of Zn and S precursors into the 

solution containing the CdSe-core nanocrystals suspended in octadecene / 

hexadecylamine. After extraction with methanol, centrifugation and decantation, the 

particles were dispersed in chloroform for further processing. The mercaptopropanoic 

acid-QDs were obtained by the phase transfer method, as described previously21. The 

resulting hydropnilic QDs with an hydrodynamic diameter of 13.5 nm were then 

purified and concentrated using a Sartorius Vivaspin 6 tube (cutoff 10 KDa) at 7500 g 

(for additional details of the characterisation see Ref 21 and Fig S1 and S2 in Supporting 

Information).  

 

SiO2-MNPs 
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This type of nanoparticles was synthesised and characterized following De 

Matteis et al.24. The particles were subsequently functionalized with an aminated silica 

coating and bio-functionalized by G protein adsorption on the aminated surface using 

the protocols reported in Arenal et al.25. As mentioned in Arenal et al. the size of the 

synthesized nanoparticles was between 100-150nm (see Supporting Information Fig 

S3). In order to visualize the SiO2-MNPs and to study their internalization in Fusarium 

hyphae, an AlexaFluor488-conjugated G protein was also used to functionalize the 

nanoparticle surface. 

 

2.3. Imaging MPA-QDs and the SiO2-MNPs interaction with fungal cells 

 

To monitor the internalization of the MPA-QDs and the SiO2-MNPs by fungal 

cells, samples were visualized after 10 min, 3 h and 16 h of incubation with either 100 

nM of MPA-QDs or 200 µg ml-1 of SiO2-MNPs using confocal Transmission Electron 

microscopy (TEM) and Energy-Dispersive X-Ray Spectra (EDS) microscopy. In 

addition, to monitor their eventual exit from the fungal cells, 16-h-old conidial 

suspensions incubated with each type of nanomaterial were passed through a 0.45-µm 

filter (Whatman) to remove all unbound MPA-QDs and SiO2-MNPs, and the mycelium 

was resuspended in sterile MM and incubated for an additional 4 h at 28 ºC. 

 

Confocal images were acquired in an AxioImager M2 microscope equipped with 

the objectives ECPlan-Neofluor x63/1.25 oil, (Carl Zeiss Microimaging, Germany) and 

appropriate filters (Texas Red ex595/em620; FITC ex490/em525 and DIC with 

Normasky) and a cooled charge-coupled device camera Photometrics Evolve 

(Photometrics, Tucson, AZ) with AxioVision 40 v4.8.2.0 Hotfix 09-PV CamEvolve 
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software. Thin time-course confocal optical sections (~1 µm thick) were acquired using 

<20% laser intensity and operating in the mode 1024 × 1024, 400 Hz (~1/2 sec per 

frame). For quantification purposes, gain and offset settings were kept constant so that 

the average background pixel intensity was between 0 and 10 and the fluorescent signal 

emitted by the cells was between 60 and 220 (0-255 scale for 8 bit images).  

 

The interaction of the fungal cells with the SiO2-MNPs was studied by cryo-

TEM techniques in a Tecnai F30 (FEI), operated at 300KV. In order to avoid damaging 

the samples by exposure to high vacuum in the microscope column, samples were 

vitrified in liquid ethane with an FEI Vitrobot, transferred to a Gatan cryo-holder, and 

then kept at liquid nitrogen temperature during the measurement. During vitrification, a 

thin amorphous layer of ice is formed, which protects the sample and preserves it in its 

original state in aqueous suspension. To identify the presence of the particles and also to 

discard any significant changes in morphology or size of the fungal cells, samples were 

observed in TEM mode.  

 

 In Scanning-Transmission Electron Microscopy (STEM) mode, a narrow probe 

is formed and the sample is scanned.  Electrons scattered at high angles were collected 

with a High Angle Annular Dark Field detector to obtain Z-contrast images. Focal 

series of STEM-HAADF images were acquired so as to locate individual particles 

inside the fungal cells. Energy-Dispersive X-Ray Spectra (EDS) were also obtained 

with an EDAX detector to assess the interaction of the magnetic particles with the cells 

and to identify their chemical composition.  

 

2.4. Magnetic separation assays and turbidity measurements  
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Taking advantage of the magnetic properties of the SiO2-MNPs, we performed 

magnetic separation assays to further study the interaction of these particles with F. 

oxysporum cells. For this purpose, two separate experiments were carried out. 

 

In the first (long-incubation), conidial suspensions were incubated with or 

without a 200 µg ml-1 solution of SiO2-MNPs for 16 h. The suspensions were then 

filtered to remove nanoparticles not internalized/attached (in)to the fungal mycelium, 

and the mycelium was resuspended in new fresh medium. This new suspension was 

placed in a well of a magnetic separation rack (MagnetoPURE-Micro, X-Zell), in which 

the magnets are placed on the lateral surface of the well. The suspension was kept under 

the magnetic field for 1, 3 and 5 min. At these times, an aliquot of the medium was 

taken, and the turbidity, indicative of mycelium concentration, was recorded 

spectrophotometrically at 600 nm (A600). The reduction in absorbance with respect to a 

similar aliquot taken in the absence of the magnet (control) was recorded as indicative 

of the nanoparticle internalization/attachment (in)to the fungus and therefore of its 

attraction by the magnet. Three replicates per treatment were done. In a second 

experiment (short-incubation), a conidial suspension grown for 16 h in the absence of 

SiO2-MNPs was subsequently incubated with or without the nanoparticles for 5 s, 15 

min and 30 min, filtered, resuspended, and introduced into the magnetic separation rack. 

Aliquots of the medium were then taken and measured as described above.       

 

2.5. Assessment of MPA-QDs and SiO2-MNPs toxicity on F. oxysporum cells 

 

Colony growth assessment 

From each preparation, various parameters relative to colony growth, such as 
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percentage of germination, percentage of long and small hyphae, and average area of 

hyphae were microscopically assessed. Long hyphae were considered to be those more 

than two-fold the length of the conidia. Assessment of average area of hyphae was 

performed on the micrographs with the help of ImageJ free-software. 

  

Reactive oxygen species (ROS) accumulation and oxidative stress assessment 

ROS formation in fungal cells exposed to the different nanomaterials and 

concentrations was evaluated using three probes: 3,3’-diaminobenzidine (DAB) and 

nitroblue tetrazolium (NBT), which are specific to hydrogen peroxide (H2O2) and 

superoxide anion (O2
-•) respectively, and 2’,7’- Dichlorodihydrofluorescein diacetate 

(H2DCFDA), which is a non-specific probe for ROS accumulation. Two controls were 

prepared for each experiment. A negative control was used, which consisted of fungal 

conidia placed in the same conditions as the assay but without the addition of MPA-

QDs and SiO2-MNPs. As a positive control, cells were heated at 50 °C for 20 min and 

immediately cooled on ice for 2 min. All experiments were carried out in triplicate. 

 

1) H2O2 detection 

The production of H2O2 at the cellular level was examined by applying the 3,3'-

diaminobenzidine (DAB) staining technique described by Thordal-Christensen et al.26 

with a few modifications. DAB reacts rapidly with H2O2 in the presence of peroxidase, 

forming a brown polymerized product. For this purpose, a 200-µl aliquot of each 16-h-

old cell suspension culture of F. oxysporum was transferred to a sterile 1.5 ml 

Eppendorf tube and supplemented with 1 mM of DAB. All samples were then incubated 

in an orbital shaker at 170 rpm, in the dark, at 28 °C for 90 min before observation 

under a bright field microscope.  
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2) O2
-• 
detection 

O2
-• was detected as described by Fryer et al.27 with slight modifications, and 

similarly to the DAB assay. Nitro-substituted aromatics such as NBT can be reduced by 

O2
-• to the monoformazan (NBT+), with the accumulation of dark spots of blue 

formazan. For this purpose, a 200-µl aliquot of each 16-h-old cell suspension culture of 

F. oxysporum was transferred to a sterile 1.5 ml Eppendorf tube and supplemented with 

0.5 mM NBT. All samples were then incubated in an orbital shaker at 170 rpm, in the 

dark, at 28 °C for 4 h before observation under a bright field microscope.  

 

 3) Cellular oxidative stress assay 

The cell-permeant 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) 

reagent was used to determine cellular oxidative stress, as described by Ortega-

Villasante et al.28 using the same procedure as for the previous assay, but adding 20 µM 

of H2DCFDA instead of NBT or DAB. After 90 min of incubation in the dark at 28 ºC 

under agitation at 170 rpm, samples were visualized under a UV light microscope (ex = 

488 and em = 525 nm). At least 35 germlings were assessed from each preparation, 

measuring the fluorescein intensity with ImageJ software as previously described29. 

 

Fungal cell viability 

Cell viability was assessed through the Evans Blue stain assay30. A diluted 

solution of Evans Blue (0.25% final concentration) was freshly prepared at the time of 

the assay, adding 10 µl of the 5% stock solution to a 200-µl aliquot of fungal 

suspension. A drop of 10 µl of the conidial suspension incubated with MPA-QDs and 

SiO2-MNPs was then placed on a microscope slide. The counts were performed using a 
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visible light microscope. As a positive control, cells were heated either at 90 ºC for 5 

min or at 50ºC for 20 min. In both cases, cells were then cooled on ice for 2 min before 

Evans Blue staining. 

 

2.6. Statistical analysis 

 

All experiments followed a randomized design. For ease of understanding, means of 

raw percentage data are presented in the tables and figures. However, for statistical 

analysis, data recorded as percentages were transformed to arcsine square roots 

(transformed value = 180/п x arcsine [√(%/100)]) to normalize them and stabilize 

variances throughout the data range, and subjected to analysis of variance using SPSS 

software, after which residual plots were inspected to confirm that the data conformed 

to normality. In addition, the Shapiro-Wilk test and Bartlett’s test were performed to test 

the normality and homogeneity of variances respectively. The significance of 

differences between means was determined by contrast analysis (Scheffe’s).  

   

3. RESULTS 

3.1. MPA-QDs and SiO2-MNPs interaction with F. oxysporum hyphal cells 

MPA-QDs 

Confocal images of F. oxysporum suspensions incubated with MPA-QDs for 10  

min showed their rapid attraction and internalization by the fungal hyphae, as shown in 

the stack projections and 3D optical sections (Fig. 1A). This situation remained 

unchanged when samples were incubated for 3 h (Fig. 1B). Up to this time, MPA-QDs 

appeared evenly distributed throughout the hyphae, but interestingly, the original 

conidia from which the hyphae grew did not attract them (double arrows Fig. 1). 
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Fig. 1. Dynamics of MPA-QDs in a suspension of growing F. oxysporum. Pictures 
represent visible and confocal micrographs of overview images (stack projections) and 
the transverse optical section obtained from the left image. Lower case letters indicate 
the orientation of the images for ease of understanding. The green hurdle in the 
overview images marks the plane of the section shown in the 3D images. F. oxysporum 
was incubated with MPA-QDs for A. 10 min, B. 3h and C. 16 h. D. The hyphal 
suspension was incubated with MPA-QDs for 16 h, filtered to remove any MPA-QDs 
from the medium, and incubated in new medium without MPA-QDs for an additional 4 
h. Bars indicate 10 µm. 
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 After 16 h of incubation with MPA-QDs, a different distribution pattern was observed. 

Thus, MPA-QDs were not homogenously distributed but grouped in well-defined 

clusters in the hyphae (Fig. 1C, stack projection). At this time, some MPA-QDs 

aggregates were also observed in the MM (Fig 1C, arrow head, stack projection). When 

the fungal suspension was filtered to remove the MPA-QDs from the medium, and the 

mycelium was resuspended in new medium without MPA-QDs for 4 h, MPA-QDs were 

still observed in discrete aggregates inside the fungus although in a slightly lower 

number (Fig. 1D stack projection). In addition MPA-QD aggregates were also detected 

on the fungal surface (Fig. 1D, arrow heads in visible field) and in the medium (Fig. 1D, 

arrow head, visible and stack projection). 

 

SiO2-MNPs  

Confocal images of F. oxysporum suspensions incubated with SiO2-MNPs 

showed a distinct distribution to that of MPA-QDs. After 10 min of incubation, SiO2-

MNPs aggregates attached to the fungal hyphal surfaces (Fig. 2A arrow head at visible 

field and stack projection).  

 

However, the nanoparticles did not penetrate the fungal hyphae since 3D optical 

sections showed a clear signal only for the largest aggregates. Although the penetration 

of non-aggregated SiO2-MNPs could not be inferred from the confocal images, it cannot 

be discarded. At 16 h of incubation, nanoparticle aggregates were still visible and 

attached on the hyphal surface, although they were smaller than those attached after a 

10-min incubation, and no signal was observed in the 3D optical sections (Fig. 2B). 

When the fungal suspensions were filtered to remove the SiO2-MNPs from the medium, 

and the mycelium was resuspended in new medium without SiO2-MNPs for 4 h, small  
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Fig. 2. Dynamics of SiO2-MNPs in a suspension of growing F. oxysporum. Pictures 
represent visible and confocal micrographs of overview images (stack projections) and 
the transverse optical section obtained. Lower case letters indicate the orientation of the 
images for ease of understanding. The green hurdle in the overview images marks the 
plane of the section shown in the 3D images. F. oxysporum was incubated with SiO2-
MNPs for A. 10 min, and B. 16 h.  C. The hyphal suspension was incubated with SiO2-
MNPs for 16 h, filtered to remove any nanoparticles from the medium, and incubated in 
new medium without SiO2-MNPs for an additional 4 h. Bars indicate 10 µm. 
 

aggregates were still observed on the fungal surface while non-attached particles were 

also found in the medium (Fig 2C, arrow heads). 

 

While MPA-QDs are highly fluorescent, the SiO2-MNPs fluorescent signal is 
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due to the AlexaFluor488-conjugated G protein adsorbed on the particle surface. In 

order to assure that the fluorescent signal from the fungal hyphae effectively 

corresponded to the SiO2-MNPs, TEM and STEM were also performed after the 

incubation of F. oxysporum with these nanoparticles. Transmission electron 

micrographs showed a range of small to medium aggregates corresponding to the SiO2-

MNPs attached to the fungal surface (Fig. 3A).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Transmision electron micrographs (BF-TEM) of F. oxysporum hyphae 

incubated with SiO2-MNPs. F. oxysporum conidia were grown in minimum medium 
with SiO2-MNPs for 16 h and then cryofixed by vitrification before bright field TEM 
analysis. A. Detail of a F. oxysporum hypha with SiO2-MNPs adhered. B. Observations 
of hyphal septum area and its interaction with SiO2-MNPs. C, D. SiO2-MNPs adhered 
to the fungal hypha and detail of a small aggregate that moved through the membrane. 
Bars indicate 0.5 µm. 

 

The chemical nature of these aggregates was confirmed by EDS spectra and 

STEM-HAADF images. This technique is highly sensitive to variations in the atomic 

number of each atom present in the material, yielding a Z-contrast image, in which it is 
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easy to identify SiO2-MNPs interacting with fungal cells. In addition, EDS confirmed 

that the aggregates (Fig. 4A) corresponded to the iron in the magnetic core and the 

silicon in the nanoparticle coating (Fig. 4B, C, D). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Energy Dispersive X-ray Spectroscopy (EDS) of High-Angle Annular Dark-

Field (HAADF) Scanning Transmission Electron Microscopy (STEM). A. Fungal 
hypha with a SiO2-MNPs aggregate adhered. B. Detail of the SiO2-MNPs showing the 
nucleus (o2) and the silica shell (o1). C, D, Spectra of the corresponding o1 and o2 area 
confirming that dark aggregates corresponded to the SiO2-MNPs. Bars indicate 100 and 
20 nm in panels A and B, respectively. 
 

  TEM images revealed that most nanoparticles were clearly on the surface, 

outside the cells (Fig. 3B). However, detailed observations near to the septum area and 

focal series of STEM-HAADF images, which present a smaller focal depth than TEM, 

suggested that individual SiO2-MNPs could enter the fungal cells. This was also 

observed by TEM, since some of the smallest aggregates moved through the fungal cell 

wall (Fig. 3 C,D).  
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Recognition of the SiO2-MNPs by the fungal hyphae was confirmed through 

magnetic separation assays followed by turbidity measurements. When fungal conidia 

were grown in the absence of SiO2-MNPs, they remained in solution after the 

application of the magnetic field, as indicated by the turbidity (or relative absorbance) 

of the suspension shown in Fig. 5A (open circles). The small decrease in the turbidity of 

these samples could be related to the slight precipitation effect that follows vortex 

stirring, a process necessary for sample homogenization prior to absorbance 

measurements. Interestingly, when fungal conidia were incubated in the presence of the 

SiO2-MNPs for 16 h, filtered, and then resuspended in new medium without 

nanoparticles, they were attracted by the magnet as early as 1 min after application of 

the magnetic field. Thus the turbidity of the medium was reduced dramatically (Fig 5A), 

confirming attachment of the nanoparticles to the hyphae. During the following 4 min, 

the turbidity decreased further but the highest reduction with respect to the control 

samples (without magnet application) was observed during the first minute. We also 

tested whether functionalization of the SiO2-MNPs with Protein G (PG) influences the 

fungus-nanoparticle interaction. Incubation of conidia with the PG-functionalized SiO2-

MNPs caused a small delay in particle movement towards the magnet. Nevertheless, 

after 5 min, the amount of particles in the proximity of the magnet and therefore the 

turbidity of the medium were similar to those of non-functionalized nanoparticles.  

 

In a second “short-term” experiment, conidia were grown in the absence of 

SiO2-MNPs, then incubated with PG-functionalized SiO2-MNPs for 5 s, 15 min, and 30 

min. They were then filtered, resuspended in new medium, and subjected to the 

magnetic field of the magnetic separation rack. Incubation of fungal conidia with SiO2-
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MNPs for as short as 5 s, drastically reduced the turbidity of the medium when 

subjected to the magnetic field (Fig. 5B). This observation confirmed the high affinity 

and rapid attraction of the nanoparticles for the fungal hyphae. 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Effect of a magnetic field on fungal hyphae incubated in the presence of 
SiO2-MNPs. The absorbance at 600 nm (A600) of a fungal conidial suspension incubated 
with or without the SiO2-MNPs was measured after placing the suspension in a 
magnetic separation rack, and percentages with respect to absorbance in the absence of 
the magnet (control) were calculated. A. Fungal conidia were grown for 16 h in the 
absence (open circles) or presence of 200 µg mL-1 SiO2-MNPs functionalized with G 
Protein (solid square) or non-functionalized (solid triangles) and then subjected to the 
magnetic field. B. Fungal conidia were grown for 16 h in the absence of SiO2-MNPs, 
then incubated for 5s (solid squares), 15 min (solid triangles) and 30 min (solid 
diamonds) with 200 µg mL-1 SiO2-MNPs functionalized with a G Protein, and finally 
subjected to the magnetic field. Open circles correspond to fungal suspensions 
incubated without nanoparticles. Data are the average of three independent replicates + 
standard error.  
 
 
3.2. MPA-QDs and SiO2-MNPs toxicity on F. oxysporum hyphal cells          

Assessment of the growth of F. oxysporum conidia when incubated with a range 

of concentrations of MPA-QDs showed that only the highest concentration, 500 nM, 

several fold over the normal concentration used for biological applications, had a 

negative effect on germination and hyphal growth. This concentration reduced the 
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percentage of long hyphae and the average area of hyphae to an even greater extent than 

the slight heat shock treatment used as a positive control (Table 1). Analysis of SiO2-

MNPs assay showed a reduction in the percentage of germination at 100 µg ml-1 while 

the heat shock treatment reduced both the percentage of germination and hyphal area, as 

in the QD assay (Table 1). 

Table 1. Effect of nanoparticles on colony growth. 

 %Germination %Long Hyphae Area (mm
2
*100) 

MPA-QDs 

0 nM 86.7ns 30.0 51.41      
10 nM 84.3 ns 27.3 ns 58.59ns 
50 nM 85.7 ns 34.0 ns 53.70ns 
100 nM 87.3 ns 32.0 ns 51.57ns 
500 nM 20.0*** 15.4* 19.14*** 
Heat 73.3** 21.3ns 34.02** 
l.s.d. 10.5 14.5 10.52 

SiO2-MNPs 

0 µg/ml 86.7 30.0 124.27 
25 µg/ml 84.3 ns 28.0 ns 114.35ns 
50 µg/ml 78.3 ns 25.7 ns 114.12 ns 
100 µg/ml 73.0* 24.3 ns 106.88 ns 
500 µg/ml 77,0 ns 21.3 ns 127.86 ns 
Heat 73.3** 21.3 ns 96.65 * 
l.s.d. 11.5 6.3 22.91 

 *, **, and *** indicates significant differences respect to the control without 
nanoparticles at P<0.05, 0.01 and 0.001 respectively. ns indicates no 
significant differences. 

 

Cells treated with 3,3'-diaminobenzidine (DAB) in the absence of oxidative stress did 

not present the typical brown precipitate caused by the presence of hydrogen peroxide 

(H2O2), which is indicative of oxidative stress (Fig. 6A). Cells treated for 20 min at 

50ºC with subsequent addition of DAB showed a brownish colour (Fig. 6A). Indeed, the 

DAB assay revealed a high generation of H2O2 in fungal suspensions subjected to the 

heat shock treatment, with approximately 80% of conidia showing brown staining (Fig. 

6B). Incubation of the fungal conidia with the MPA-QDs or the SiO2-MNPs did not 

increase H2O2 production within fungal hyphae, as inferred by the absence of staining 
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(Fig. 6B). Interestingly, incubation of hyphal cells with QDs slightly but significantly 

reduced the level of H2O2 with respect to that of conidia incubated in the absence of 

MPA-QDs.    

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Assessment of H2O2 generation of F. oxysporum following treatment with 

MPA-QDs and SiO2-MNPs. A. Optical microscopy images of negative control 
incubated in the absence of MPA-QDs and SiO2-MNPs. and positive control treated 
with heat following application of DAB stain. Bars indicate 20 µm. B. Quantification of 
positive DAB hyphae following incubation with a range of concentrations of MPA-QDs 
and SiO2-MNPs.  
 

After heating the F. oxysporum conidial suspensions for 20 min at 50ºC, nearly 

100% of the hyphae exhibited dark blue formazan spots (Fig. 7A). These deposits 

indicated that superoxide anion (O2
-·) was produced by these structures at a higher rate 

than its detoxification in response to the heat stress, since no spots were seen in the 

controls (Fig. 7A).  
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Fig. 7. Assessment of O2
-
 · generation on F. oxysporum following treatment with 

MPA-QDs and SiO2-MNPs. A. Optical microscopy images of negative control 
incubated in the absence of MPA-QDs and SiO2-MNPs and positive control treated with 
heat following application of NBT stain. Bars indicate 20 µm. B. Quantification of 
positive NBT hyphae following incubation with a range of concentrations of MPA-QDs 
and SiO2-MNPs.  
 

While very low levels of O2
-· generation were observed in controls grown in the 

absence of MPA-QDs, fungal suspensions incubated with these particles, at any of the 

concentrations tested, induced O2
-· generation similar to that observed in the heat- 

treated samples (Fig 7B). However, fungal suspensions incubated with the SiO2-MNPs 

showed a distinct behaviour, since only the concentration of 50 µg ml-1 significantly 

increased the O2
-· with respect to the controls incubated in the absence of SiO2-MNPs 

and this occurred to a significantly lower extent than in the heat-treated samples. 

 

When treated with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), 
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control hyphae showed a basal-level fluorescent signal, as previously reported (Fig. 8A; 

31). In heat-treated samples, the H2DCFDA signal was significantly increased (Fig. 8A), 

thus showing a response in terms of ROS accumulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Assessment of cellular stress on F. oxysporum following treatment with 

MPA-QDs and SiO2-MNPs. A. Microscopy images of negative control incubated in 
the absence of MPA-QDs and SiO2-MNPs and positive control treated with heat 
following application of H2DCFDA stain. Bars indicate 20 µm. B. Quantification of 
H2DCFDA fluorescence of F. oxysporum hyphae following incubation with a range of 
concentrations of MPA-QDs and SiO2-MNPs.  
 

Interestingly, while concentrations of 10 and 50 µg ml-1 of MPA-QDs induced 

similar fluorescence than controls, higher concentrations significantly reduced this 

fluorescence, thereby indicating lower oxidative stress (Fig. 8B). No effect of SiO2-

MNPs on H2DCFDA fluorescence was observed with any of the concentrations tested 

(Fig. 8B). 

Page 23 of 41

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



24 

 

 

Dead fungal cells treated with Evans Blue presented a typical blue coloration, 

which was not observed in living hyphae (Fig. 9A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Assessment of cell viability of F. oxysporum following treatment with MPA-

QDs and SiO2-MNPs. A. Optical microscopy of negative control incubated in the 
absence of MPA-QDs and SiO2-MNPs and positive control treated with heat following 
application of Evans Blue stain. Bars indicate 20 µm. B. Quantification of positive 
Evans Blue hyphae after incubation with a range of concentrations of MPA-QDs and 
SiO2-MNPs.  
 

Fungal cell viability assays showed that there was a negligible impact of the type 

and concentration of nanoparticles on cell viability, especially when compared with the 

impact of the heat stress on positive controls (Fig 9B). Only the highest concentration of 

MPA-QDs and the 25 µg/ml of SiO2-MNPs lead to a slightly higher percentage of dead 

hyphae than the reference. However, in these cases, the observed variation was not 

higher than 4% of dead cells. No significant differences were found when incubated the 
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fungus with these nanomaterials for up to 48 hours (See in Supporting Information).       

 

4. DISCUSSION 

One of the major challenges in pathology is the early and accurate detection of 

diseases. A number of new, highly sensitive, diagnostic nanotechnology-based 

platforms have recently been developed to detect biomolecules and cells. These could 

allow the early detection of diseases or could provide valuable insight into biology at 

the systems levels32. In addition, nanomaterials are attracting attention as potential drug 

delivery carriers33 and hence as novel tools for the direct control of diseases. Here we 

assessed two distinct types of nano-sized materials as potential tools for the detection 

and/or control of F. oxysporum, one of the main constraints for many crops34 and an 

opportunistic human pathogen2.  

The choice of QDs and superparamagnetic nanoparticles in this study arose from 

their wide use for biological and medical research in recent years and because they have 

different physical properties but are similarly robust, versatile, and possess a high 

potential for high-throughput biosensing platforms32,35. QDs are easily detected because 

of their unusually intense and photostable fluorescence, thus avoiding the shortcomings 

—such as autofluorescence and photobleaching— of organic fluorophores. Thus, QDs 

are a highly suitable option when superior performance is required to achieve lower 

limits of detection, more quantitative results, greater sample photostability, or higher 

levels of multiplexability35. On the other hand, biological samples exhibit virtually no 

magnetic background and thus the use of magnetic nanoparticles allows highly sensitive 

measurements in turbid or otherwise visually obscured samples without further 

processing. Indeed numerous methods including magnetization measurements, such as 

those performed by means of high sensitivity SQUID magnetometers36-37, 

Page 25 of 41

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



26 

 

magnetoresistive sensors14, Hall sensors38, and approaches based on magnetic 

resonance39 have been successfully developed to sense biomolecules using magnetic 

nanoparticles.        

 

Imaging of the interaction of F. oxysporum with the two types of nanomaterials 

by means of confocal microscopy showed distinct behaviors between MPA-QDs and 

SiO2-MNPs. Both showed high interaction with the fungal cells; however, while MPA-

QDs readily penetrated the fungal hyphae, most of the SiO2-MNPs remained attached to 

the fungal cell wall surface. Recent investigations into the nature of the relationship 

between cellular uptake and physico-chemical properties of nanosized objects indicate 

that their entry into cells is dependent on many factors, such as their size, charge, 

hydrophobicity or even ligand arrangement. Thus, in the present study, size differences 

could have influenced the uptake since the MPA-QDs used were smaller than the SiO2-

MNPs (13.5 nm vs. c.a. 100-150 nm diameter, respectively). In addition, MPA-QDs and 

SiO2-MNPs showed distinct surface charges at the pH tested. Both of them were 

incubated together with the fungal conidia in liquid MM, which is characterized by a 

slightly acidic pH of 6, since this value is appropriate for F. oxysporum growth and it is 

also the xylem pH of plants from which the fungal spread occurs40. At this pH, δ-

potential curves showed negative values (c.a. -35 mV) for MPA-QDs and positive 

values (of c.a. +25mV) for SiO2-MNPs22, 24. Thus both were in the range of moderate 

stability but with opposite charges.  

 

Several studies have reported the interaction and uptake of various types of 

nanosized materials by animal and plant cells6,10,41-43. Indeed, recent studies have 

reported their potential for detection and control of human pathogenic bacteria and 
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viruses44-45. However, to the best of our knowledge, no studies have addressed the 

interaction of such types of nanomaterials with hyphal cells, characterized by the 

presence of a fungal cell wall. Electron microscopy studies have reported that the cell 

wall structure of F. oxysporum consists of an outer layer with a high presence of 

proteins46 enriched in glycoproteins47, and an inner layer composed mainly of chitin and 

β-1,3-glucan. Cell wall glycoproteins determine the antigenic and adhesive properties of 

the hyphae48. Particularly, one of the most abundant, glycosylphosphatidylinositol-

modified (GPI) cell wall proteins, commonly named adhesins, have an N-terminal 

signal peptide and a C-terminal sequence containing a peptide for anchoring to a 

preformed GPI site that mediates the adhesion to organic and inorganic surfaces49. This 

site might also mediate the adhesion of the larger SiO2-MNPs. In addition, since the 

glycoproteins are negatively charged, positively charged SiO2-MNPs would be attracted 

by electrostatic interactions10. Neutral or negatively charged QDs have been reported to 

be more weakly bound to glycoproteins; however, it was also shown that QDs and 

nanoparticles with a negative charge can be massively internalized when their 

concentration is sufficient6,50. Therefore since both MPA-QDS and SiO2-MNPs 

interacted with the fungal hyphae, the massive internalization of QDs could be 

explained by their small diameter. Indeed, the larger size of aggregates of SiO2-MNPs 

formed on the hyphae surface, which made them visible in the confocal and even visible 

field, may hinder their uptake, similarly to the slight aggregation in the media at high 

nanoparticle concentration. Interestingly, fewer aggregates were observed following 

longer incubation periods. This finding could be attributed to the slight acidification of 

the incubation medium during F. oxysporum growth51. This acidification might increase 

the δ-potential and improve the stability of the SiO2-MNPs. It has been suggested that, 

given their small size, QDs could cross the plasma membrane mainly through 
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pinocytosis, a distinct endocytotic mechanism, chiefly responsible for the uptake of cell 

nutrients and other small particles10. However, the contribution of the specific endocytic 

clathrin/caveolae-dependent/independent route remains to be clarified. 

 

Focusing on the internalized MPA-QDs, their distribution pattern dramatically 

changed from an even and uniform distribution in the short-term incubations (10 min 

and 3 h), where they were observed throughout the cytoplasm, to a grouping in large 

clusters within the hyphal cells at longer incubation time (16 h). This change in 

distribution has been previously reported and suggested to be due to nanoparticle 

processing and compartmentalization9. Many studies have revealed the preferential 

localization of QDs in lysosomes, a common terminus of several endocytic pathways. 

During uptake, QDs are internalized into endocytic vesicles, which fuse with early 

endosomes and lysosomes52-53. Early endosomes that contain QDs have also been 

observed to traffic back to the plasma membrane in a process which may contribute to 

QD exocytosis50. Our data support the notion of QD back trafficking since, after 

filtration of the incubation medium to remove them and resuspension of the mycelium 

in new medium, QD aggregates were detected on the surface of the fungal cell wall and 

also in the medium. Although it has been postulated that P-glycoprotein transporters are 

involved in QD removal54, there is no consensus as yet on which of the specific 

processes leads to QD release and on the possible involvement of exocytic mediators.  

 

Of the few studies on nanomaterials devoted to fungi, these have focused mainly 

on the potential of fungi to synthesize the nanomaterials55. Indeed, extracellular 

biosynthesis of silver nanoparticles from ionic silver occurs in F. oxysporum56. There 

are limited studies on the toxicity of metal nanoparticles, and these have reported only a 
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direct toxic effect of silver on the fungal growth and viability of Candida spp, F. 

culmorum and Trychophyton mentagrophytes comparable to that of ionic silver57-58. 

Here we assessed the toxicity of MPA-QDs and SiO2-MNPs on F. oxysporum over a 

range of concentrations using cell-based toxicity tests. These tests allow the setup of 

high-throughput systems for rapid and cost effective screening of hazards, while 

targeting the biological responses under highly controlled conditions59. Our assessment 

included the evaluation of fungal germination and growth, the production and 

accumulation of ROS, particularly H2O2 and O2
-•, and fungal viability. Our data showed 

that MPA-QDs and SiO2-MNPs exerted distinct effects on F. oxysporum and that they 

also showed a concentration-dependent effect. Differences may arise from the distinct 

uptake previously described, and also from the diverse nature of the materials and their 

stabilizing shells.   

     

Only the highest MPA-QD concentration, which greatly exceeded the 

concentrations commonly used in biological applications, showed an effect on conidial 

germination and hyphal growth. In contrast, intermediate concentrations of SiO2-MNPs 

slightly but significantly reduced conidial germination. This was not seen at higher 

concentrations probably because of the aggregate formation observed, which could limit 

the effect of the SiO2-MNPs. Indeed, the large surface area per mass compared with 

larger-sized particles is what makes SiO2-MNPs more reactive biologically60. Thus, 

aggregate formation would render SiO2-MNPs less reactive. This observation has raised 

the importance of testing a range of concentrations in toxicity assays, paying special 

attention to the possible concentration-induced aggregation effect61. This effect of the 

SiO2-MNPs was also observed in the O2
-• and cell viability assessments. Surprisingly, 

H2O2 production, which can damage various molecular targets, including DNA, protein 
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and lipids, was not observed under the conditions assayed with MPA-QDs and SiO2-

MNPs. Indeed, a significant decrease in H2O2 production was detected after several of 

the treatments. This observation might be attributable to the anti-oxidant properties of 

some nano-sized materials, such as fullerenes, which may prevent lipid peroxidation 

induced by superoxide and hydroxyl radicals62. In addition, Gao et al.63 reported that 

bare magnetic iron oxide nanoparticles exhibit peroxidase-like activity, which reduces 

the amount of H2O2 present in the cells. Our data support a peroxidase-like activity for 

both MPA-QDs and SiO2-MNPs, since although a decrease in H2O2 was observed, O2
-• 

generation was increased at all the QD concentrations tested and at intermediate 

concentrations of SiO2-MNPs. The higher effect of MPA-QDs on O2
-• generation 

compared with SiO2-MNPs could be due to the higher MPA-QD uptake and/or to a 

catalase-like activity, as described for iron oxide nanoparticles64. 

 

5. CONCLUSION 

In the work presented here, the interaction of two different inorganic 

nanoparticles, MPA-QDs and SiO2-MNPs with fungal cells has been addressed. To our 

knowledge, the behavior of a fungal cell wall in the presence of such nanomaterials had 

not been undertaken to date. Both nanomaterials rapidly interacted with the fungal 

hypha labeling the presence of the pathogenic fungus, although they showed differential 

behaviour with respect to internalization. Thus, whereas magnetic nanoparticles 

appeared to be in the cell surface, quantum dots were significantly uptaken by the 

fungal hyphae. In addition different assays show a low toxicity profile for both types of 

nanomaterials to the fungus. 

Overall, the internalization and toxicity studies showed that after an appropriated 

functionalization the MPA-QDs and SiO2-MNPs might be applied for the rapid and 
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sensitive detection of F. oxysporum and also for the control of this devastating 

pathogen. In both cases, in combination with a biomolecule able to target a desired 

formae specialis, they could act as inner- (in the case of MPA-QDs) or surface- (in the 

case of SiO2-MNPs) fungus labels. In addition, the massive uptake of MPA-QDs by the 

fungal hypha and their low toxicity support their use as potential carriers that could be 

functionalized with drugs or with precise DNA/RNA sequences that are specific to the 

different F. oxysporum formae speciales to be delivered inside the fungal cells. The 

capacity of SiO2-MNPs to remain in sufficient amounts at the hyphal surface supports 

their use for magnetic separation applications and biosensing based on magnetic 

detection. This work opens a field for the development of new detection and controls 

approaches based on nanotechnology. 
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