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Dimer-hole-RVB state of the two-legt-J ladder: A recurrent variational ansatz
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We present a variational treatment of the ground state of the two-legt-J ladder, which combines the dimer
and the hard-core boson models into one effective model. This model allows us to study the local structure of
the hole pairs as a function of doping. A second-order recursion relation is used to generate the variational
wave function, which substantially simplifies the computations. We obtain good agreement with numerical
density matrix renormalization group results for the ground state energy in the strong-coupling regime. We find
that the local structure of the pairs depends upon whether the ladder is slightly or strongly dopped.
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INTRODUCTION

The two-leg, t-J ladder represents one of the simple
systems which exhibits some of the phenomena assoc
with high-Tc cuprate superconductivity.1–6 The ground state
of the undoped system, a two-leg Heisenberg ladder,
spin liquid with a finite spin gap and exponentially decayi
antiferromagnetic spin-spin correlations. Upon doping,
spin gap remains and there appear power law charge de
wave ~CDW! and singlet superconducting~SC! pairing cor-
relations. In addition, the pairing correlations have an int
nal dx22y2-like symmetry with a relative sign difference be
tween the leg and rung singlets which make up a p
Despite all of the numerical and analytical work which h
been done on this system, we still lack a picture of
ground state which accommodates all of these physical p
erties. There are, however, many hints of what that pict
may look like. It is the purpose of this paper to take one s
further in that direction.

Short-range resonating valence bonds~RVB’s! provide a
useful basis for representing the ground state of s
liquids.7,8 For thet-J ladder, a zeroth-order picture has be
provided by the study of the strong-coupling limit where t
exchange coupling constant along the rungs,J8, is much
larger than any other scale in the problem. The other c
pling constants of the model areJ, the exchange coupling
constant along the legs, andt andt8, the hopping parameter
along the legs and the rungs, respectively. In the limitJ8
@J,t,t8, the ground state of the undoped ladder is sim
given by the coherent superposition of singlets across
rungs. The addition of one hole requires the breaking of
570163-1829/98/57~18!/11666~8!/$15.00
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of these singlets, in which case the hole gets effectiv
bound to the unpaired spin, becoming a quasiparticle w
spin 1/2 and chargeueu. The addition of another hole leads t
the binding of two holes in the same rung in order to mi
mize the cost in energy. In this picture there is no sp
charge separation, a fact that remains valid down to inter
diate and weak couplings, as confirmed by various numer
and analytical studies. Based on this picture it is possible
construct an effective theory describing the motion and
teractions of the hole pairs.6 It is given by a hard-core boso
~HCB! model characterized by an effective hopping para
etert* and interactionV* of the hole pairs. The HCB mode
describes the doped ladder as a Luther-Emery liquid, w
gapped spin excitations and gapless charge collective mo
which are responsible for the CDW and SC power law c
relations. We summarize the zeroth-order picture in Fig.
which shows a typical state of HCB’s, as well as the tw
building blocks that are used its construction.

In order to go beyond this picture, we need to consider
fluctuations of the states of the HCB model. To lowest ord
in perturbation theory they are shown in Fig. 2. The adm
ture of the state shown in Fig. 2~a! is of order J/J8 and
represents a resonance of two nearest-neighbor rung sing

FIG. 1. The zeroth-order picture of the hard-core boson mo
~a! the vertical bond,~b! the vertical hole-pair singlet, and~c! a
typical state of the HCB model.
11 666 © 1998 The American Physical Society
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57 11 667DIMER-HOLE-RVB STATE OF THE TWO-LEGt-J . . .
According to the standard RVB scenario, this resonance
fect leads to a substantial lowering of the ground state
ergy. The state in Fig. 2~b! is of order t/J8, and it can be
thought of as a bound state of two quasiparticles, wh
characteristic feature is the diagonal frustrating bond ac
the holes. From the RVB point of view, Fig. 2~b! is a reso-
nance of a singlet and a hole pair. The importance of
state, even for intermediate couplings such asJ5J850.5t,
was emphasized in the density matrix renormalization gr
~DMRG! study of Ref. 9, where it was shown to be the mo
probable configuration of two dynamical holes in a two-l
ladder. In the HCB model of Ref. 6, the states of the form
Fig. 2~b! are taken into account as intermediate or virtu
states, which lead to the effective hoppingt* and interaction
V* between the hole pairs. It is clear, however, that ‘‘in
grating out’’ the diagonal states through perturbation the
erases the internal structure of the hole pairs. Here we w
to extend the HCB description to include the internal str
ture of the hole pairs.

In order to define an effective model which would reta
the degrees of freedom associated with the internal struc
of the hole pairs, we need to consider the states that appe
second order in the strong-coupling expansion. They
given in Fig. 3. Let us comment on them. The state of F
3~a! is of order (J/J8)2 and it is a higher-order RVB state
whose contribution to the ground state of the undoped lad
was studied in Ref. 10. In this reference it was shown tha
inclusion in a variational ansatz improves the numerical
sults, but does not change the qualitative picture obtai
using the dimer ansatz.4,11 The state of Fig. 3~b!, which is in
fact first order int8, can be seen as a bound state of t

FIG. 2. The two lowest-order states in the strong-coupling lim
J8@J,t,t8 of the HCB model; they represent the first-order con
bution to the DHCB model:~a! the resonance of two vertical bond
and ~b! bound state of two quasiparticles.

FIG. 3. Higher-order strong-coupling states contributing to
DHCB model: ~a! a higher-order RVB state,~b! a bound state of
two quasiparticles, and~c! and ~d! higher-order corrections to th
diagonal state~b!.
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quasiparticles, while Figs. 3~c! and 3~d! are higher-order cor-
rections to the diagonal state shown in Fig. 2~b!. For these
reasons it seems consistent to keep the state of Fig. 3~b! on
an equal footing with the states of Figs. 2~a! and 2~b!. To
give further support to this choice, we notice that the ex
solution for two holes on the 232 cluster requires a super
position of the states shown in Figs. 2~b! and 3~b! along with
Figs. 1~a! and 1~b! ~see Fig. 4!.9

In summary, we conjecture that in order to discuss
nature of the superconducting order parameter of the do
two-leg, t-J ladder, in the strong-coupling regime, it is su
ficient to consider states built up from five possible loc
configurations, given by rung-singlet bonds@Fig. 1~a!#, rung-
hole pairs@Fig. 1~b!#, two-leg bonds@Fig. 2~a!#, hole pairs
with a singlet diagonal bond@Fig. 2~b!# and hole pairs with a
singlet leg bond@Fig. 3~b!#. A typical state constructed usin
these building blocks is shown in Fig. 5. We shall call the
types of statesdimer-hole-RVBstates. The effective mode
that governs their dynamics will be called thedimer hard-
core boson model~DHCB! and its Hamiltonian can be dete
mined by considering the fluctuations of the dimer-ho
states, in a manner similar to the one considered above
the HCB states. The DHCB model contains spin and cha
degrees of freedom, together with their couplings, and in t
sense is an interesting model to study the interplay betw
the two types of degrees of freedom, although here we
focus on the variational ground state of the model.

The mathematical formulation of the DHCB model in
volves an interesting but complicated combination of ver
and interaction round a face~IRF! models. The latter termi-
nology is borrowed from statistical mechanics.12 The vertex
variables describe the number of electrons per rung, i.e.ni
50,1,2, while the IRF variables describe the number a
type of bonds connecting two rungs, i.e.,l i ,i 1150, 1d , 1h ,
2, where the subindicesd and h indicate the diagonal or
horizontal nature of the bond. The only allowed configu
tions for two consecutive IRF variables (l i ,i 11 ,l i 11,i 12) are
(0,0), (1d,0), (1h,0), and (2,0) together with their permuta
tions. Moreover, the vertex variables are subject to cer
constraints imposed by the IRF ones. Namely,~A! if l i ,i 11
51d or 1h , thenni5ni 1151, and~B! if l i ,i 1152, thenni
5ni 1152. Only if l i ,i 1150 canni andni 11 take any value,
i.e., 0, 1, or 2.

It is beyond the scope of this work to present a full a
count of the DHCB model. Instead, we shall try to uncov

t

e

FIG. 4. The exact ground state for a single plaquette with t
holes~Ref. 9! ~caseN52 andP51).

FIG. 5. A typical dimer-hole-RVB state.



ap
ou

e

h
a
by
in
g
ta
se

k

u-

s

,

n
g
se
b

la-

-
tal

s-
of
it

a
of

-
sts
le
ef.

e

a
ure
rent
mic

es
er-
er

es

th

11 668 57GERMÁN SIERRA et al.
some of its physics, by means of a combination of two
proaches, namely, the density matrix renormalization gr
method13 and the recurrence relation method~RRM!.10

While the DMRG method is a powerful numerical techniqu
which in many cases yields the exact answer, the RRM
essentially analytic, lacking the numerical precision of t
DMRG method, but sharing with it some features, such
for example, the Wilsonian way of growing the system
the addition of sites at the boundary. In the RRM one beg
with an assumption about the local configurations throu
which the system grows. Then one may test whether the s
that is generated gives results in agreement with the es
tially exact DMRG results.

VARIATIONAL WAVE FUNCTION

The Hamiltonian of the two-leg,t-J ladder is given by

H5HS1HK5(
^ i , j &

Ji j ~Si•Sj2
1
4 ninj !

2 (
^ i , j &,s

t i j PG~ci ,s
† cj ,s1cj ,s

† ci ,s!PG , ~1!

whereJi j ,t i j 5J,t or J8,t8, depending on whether the lin
^ i j & is along the legs or the rungs, respectively.PG is the
Gutzwiller projection operator which forbids double occ
pancy. The rest of the operators appearing in Eq.~1! are
standard~we use the conventions of Ref. 9!. Each sitei is
labeled by the coordinates (x,y) with x51, . . . ,N and y
51,2. We choose open boundary conditions along the leg
the ladder.

The pair field operator which creates a pair of electrons
the sitesi and j , out of the vacuum is given by

D i , j
† 5

1

A2
~ci ,↑

† cj ,↓
† 1cj ,↑

† ci ,↓
† !. ~2!

As explained in the Introduction, we want to build up a
ansatz for the ground state based on the five local confi
rations of the DHCB model. The explicit realization of the
configurations in terms of pair field operators are given
~see Fig. 6!,

uf1,1&x5u0&x ,

FIG. 6. Elementary building block states of the RRM used in
construction of the dimer-hole states.
-
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uf1,0&x5D~x,1!~x,2!
† u0&x ,

uf2,0&x,x1152uD~x,1!~x11,1!
† D~x,2!~x11,2!

† u0&x,x11 , ~3!

uf2,1&x,x115@b~D~x,1!~x11,2!
† 1D~x,2!~x11,1!

† !

1c~D~x,1!~x11,1!
†

1D~x,2!~x11,2!
† !] u0&x,x11 ,

whereu0&x is the Fock vacuum associated with the rung
beled by the coordinatex (u0&x,x115u0&x^ u0&x11). The
statesufn,p& involve n51,2 rungs andp50,1 pairs of holes.
The variational parameteru gives the amplitude of the reso
nance of a pair of bonds between vertical and horizon
positions,10 while b andc are the variational parameters a
sociated with the diagonal and horizontal configurations
two holes, respectively. In the strong-coupling lim
J8@J,t,t8, we expect to find u;J/J8, b;t/J8 , and
c;tt8/J82.

Let us call uN,P& the ground state of a ladder withN
rungs andP pairs of holes. Of course we should be in
regime of the coupling constants where there is binding
two holes. The stateuN,P& will be in general a linear super
position of the dimer-hole states of Fig. 5, which sugge
that working with this sort of states could be a formidab
task. Fortunately, we can apply the method developed in R
10 to generateuN,P& in a recursive manner, in terms of th
states of the ladders withN21 andN22 rungs, andP and
P21 pairs of holes. In Ref. 10 it was shown thatuN,P50&,
which is in fact a dimer-RVB state,4,11 can be generated by
second-order recursion relation. Then by a simple proced
one can compute overlaps and expectation values of diffe
operators using recursion formulas, whose thermodyna
limit can be studied analytically.

Following the strategy of considering first the HCB stat
and then the DHCB ones, we shall give the rule that gen
ates the former type of states. It is given by the first-ord
recursion relation

uN11,P11&5uN,P11&uf1,0&N111uN,P&uf1,1&N11 ,
~4!

supplemented with the initial conditions

u1,0&5uf1,0&,

u1,1&5uf1,1&,

uN,P&50 for N,P. ~5!

Calling FN,P
HCB the number of linearly independent stat

contained inuN,P&, we deduce from Eq.~4! the recursion
relation

FN11,P11
HCB 5FN,P11

HCB 1FN,P
HCB, ~6!

whose solution is given by the combinatorial number

FN,P
HCB5S N

PD . ~7!

e
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57 11 669DIMER-HOLE-RVB STATE OF THE TWO-LEGt-J . . .
Equation ~7! is the dimension of the Hilbert space of th
HCB model withN sites andP pair of holes. We have no
introduced variational parameters in Eqs.~5!, but if we did,
then all states of the Hilbert space of the HCB model wo
be generated by the first-order recursion relation. It may
worthwhile to recall that the HCB model is essentia
equivalent to the spinless fermion model or theXXZ model,
which is exactly solvable by Bethe ansatz methods.6

Turning now to the DHCB model, the key point is t
realize that the dimer-hole states can be generated by
following second-order recursion relation, involving the l
cal configurations given by Eq.~3!:

uN12,P11&5uN11,P11&uf1,0&N121uN11,P&uf1,1&N12

1uN,P11&uf2,0&N11,N12

1uN,P&uf2,1&N11,N12 , ~8!

with the initial conditions~5!. See Fig. 7 for a graphica
representation of Eq.~8!.

Counting dimer-hole states
Let FN,P denote the number of dimer-hole states of

two-leg ladder withN rungs containingP pairs of holes.
According to Eq.~8! they satisfy the recursion relation

FN12,P115FN11,P111FN,P111FN11,P14FN,P , ~9!

with the initial conditions

FN,N51, FN,P50 for N,P. ~10!

From Eqs.~9! and ~10! we deduce thatFN,0 satisfies the
well-known Fibonacci recursion formula,10 and that in the
limit of very largeN it grows exponentially,

FN,0;F0
N ~N@1!, ~11!

whereF05 1
2 (11A5) is the golden ratio. Using generatin

function methods10 one can easily solve the recursion re
tion ~9!, together with the initial condition~10!. The result is
given by the contour integral

FN,P5 R dz

2p i

zN11~z14!P

~z22z21!P11
, ~12!

where the contour encircles the singularities of the integra
For P50 the integrand has two simple poles at the zeros

FIG. 7. A pictorial representation of Eq.~8!.
d
e
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the polynomialz22z21, the largest of which is precisel
the golden ratioF0. In this way one gets Eq.~11!. For a
finite number of holes the residue formula applied to Eq.~12!
yields, to leading order inN,

FN,P;NPF0
N , N@1, P:finite, ~13!

where the proportionality constant depends only onP. Let us
finally consider the limit where bothN andP go to infinity,
while keeping their ratio fixed,

x5
number of holes

number of sites
5

P

N
, 0<x<1. ~14!

Here x can be identified with the hole doping factor of th
state uN,P&. The saddle point method applied to Eq.~12!
gives the asymptotic behavior of the number of dimer-h
states for a finite density of holes,

FN,P; f ~x!N, f ~x!5
F~F14!x

~F22F21!x
, ~15!

whereF5F(x) is the highest root of the following equa
tion:

x5
~F22F21!~F14!

F~F218F23!
. ~16!

The function f (x) is depicted in Fig. 8. Observe tha
F(0)5F0. The effect of a finite density of holes is that o
moving a singularity. This phenomenon also occurs in
computation of the energy and other observables.

Ground state energy
The parametersu,b,c are found by the standard minim

zation of the mean value of the energ
^N,PuHNuN,P&/^N,PuN,P&, whereHN denotes the Hamil-
tonian of the ladder withN rungs. The usefulness of Eq.~8!

FIG. 8. The functionf (x) appearing in Eq.~15!. The maximum
appears atx50.44.
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11 670 57GERMÁN SIERRA et al.
is that it implies that the wave function and energy overla
also satisfy recursion relations. Let us define the follow
quantities:

ZN,P5^N,PuN,P&,

YN,P5N^f1,0u^N21,PuN,P&,

EN,P5^N,PuHNuN,P&, ~17!

DN,P5N^f1,0u^N21,PuHNuN,P&,

WN,P5^N,PunNuN,P&,

wherenN is the number operator acting on the rungN. The
off-diagonal overlaps arise from the cross terms when ap
ing Eq. ~8! to the ket and the bras in̂N12,P11uN12,P
11& and^N12,P11uHN12uN12,P11&. The recursion re-
lations satisfied by Eq.~17! are given by

ZN12,P115ZN11,P111u2ZN,P111uYN11,P111ZN11,P

12~b21c2!ZN,P ,

YN12,P115ZN11,P111u/2YN11,P11 ,

EN12,P115EN11,P112J8ZN11,P111u2EN,P11

2~2J1J8/2!u2ZN,P111EN11,P

12~b21c2!EN,P2~2Jc214bt18bct8!ZN,P

1uDN11,P1122u~J1J8/2!YN11,P11

24tbYN11,P2 1
4 JWN11,P11

2 1
4 Ju2WN,P112 1

4 J~b21c2!WN,P , ~18!

DN12,P115EN11,P112J8ZN11,P111u/2DN11,P11

2u~J1J8/2!YN11,P1122tbZN,P

2 1
4 JWN11,P11 ,

WN12,P1152ZN11,P1112u2ZN,P1112~b21c2!ZN,P

12uYN11,P11 .

The initial conditions read

Z0,051, Y0,05E0,05D0,05W0,050,

XN,P50, for N,P and X5Z,Y,E,D,W. ~19!

For finite values ofN andP, and given choices ofu,b,c,
one can iterate numerically the recursion relations~18! using
the initial conditions~19! and look for the minimum of the
ground state energyEN,P /ZN,P . We give below the results
obtained using this variational method for a 2332 ladder
and compare them with the corresponding results obta
with the DMRG method.

We also present numerical results which correspond
variational approach to the HCB model. There are two w
to perform a variational study of the HCB model. The fir
one can be done in terms of the state generated by Eq~4!
and the effective HCB Hamiltonian of Ref. 6. This Ham
s
g

y-

d

a
s

t

tonian contains the effects of virtual states of holes in di
onal positions. The other approach consists in takingu5c
50 andbÞ0 and the full ladder Hamiltonian. We believ
that both approaches give essentially the same results.
shall follow below the second one.

RRM WAVE FUNCTION VERSUS THE DMRG METHOD:
NUMERICAL RESULTS

As explained in the Introduction the DHCB model is th
appropriate framework to study the strong-coupling limit
the two-leg ladder, if one wishes to take into account
local structure of the hole pairs. To check the validity of th
assumption we have studied the cases where the coup
constants take the following values:t5t851, J50.5, and
J850.5, 1, 2, 3, 4, and 5. In this manner we go from t
intermediate-coupling regime, i.e.,J8;1, to the strong-
coupling regimeJ8*3.5. We are always working in a non
phase-separated region.

In Fig. 9 we show the ground state energy of the 2332
ladder, for the previous choices of parameters, compu
with the RRM for all dopings and the DMRG method fo
x51/8, 1/2, and 7/8. One sees that the results obtained
the DHCB method wave function agree reasonably well w
those of the DMRG and their accuracy improves asJ8 in-
creases. The curve denoted as HCB corresponds to a m
mization with u5c50 andbÞ0, and describes essential
the results of the variationally HCB state, as was explain
above. We observe that the DHCB and the HCB agree v
well in the strong-coupling regimeJ8..J and low and high
dopings.

The kinetic energy of the ladder is shown in Fig. 10. It h

FIG. 9. Ground state energy per site of the 2332 ladder with
J50.5, t5t851, andJ850.5,1,2,3,4,5. The remaining data give
below in Figs. 10–13 also correspond to these choices of coupli
The continuum curves are obtained with the RRM. The dot
curves correspond to the variational computation withu5c50 and
bÞ0, which we argue gives a variational estimate of the HC
ground state energy. The special symbols are the DMRG data
responding tox51/8, 1/2, and 7/8, respectively.
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the pattern expected for a collective charge mode, as
scribed by the HCB and the DHCB models. For a dopingx
;1/2, the kinetic energy reaches an absolute minim
which is independent of the values of the coupling consta
This optimal doping corresponds essentially to the maxim
of the curve in Fig. 8, which gives the exponent of the e
ponential law governing the number of dimer-hole states

The nature of the variational many-body state we ha
constructed is clarified by Figs. 11, 12, and 13 where
show the values of the variational parametersu, b, andc as
functions of the dopingx for different coupling constants
The parameteru starts from a positive value correspondin
to the undoped ladder,10 and it decreases upon doping until
critical valuexc(J/J8), where it vanishes. For higher doping

FIG. 10. Kinetic energy per site. The continuum curves cor
spond to the RRM, and the dotted curves correspond to the v
tional caseu5c50, bÞ0.

FIG. 11. The variational parameteru as a function of the
doping.
e-

s.

-

e
e

u becomes negative. For the undoped ladder the parameu
can be interpreted as the square of the RVB amplitudehRVB
for having a bond along the legs.10 The analog amplitude for
a bond along the rungs has been implicitly normalized to
For low doping, i.e.,x,xc , sinceu(x).0, we can similarly
define a doping-dependent amplitude for a leg bond as

u~x!5hRVB
2 ~x!.0 ~x,xc!. ~20!

In order to fulfill the Marshall theorem for the undoped la
der one requires the RVB amplitudehRVB(0) to be positive,8

which explains whyu(0) is also positive. Actually for the
positivity of u(0) one just needshRVB(0) to be a real num-
ber. At x50, hRVB(0) increases withJ/J8 due to the reso-
nance between rung and leg singlets, according to the R
scenario. Upon doping, however, the holes give rise to

-
ia-

FIG. 12. The variational parameterb as a function of the
doping.

FIG. 13. The variational parameterc as a function of the
doping.
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11 672 57GERMÁN SIERRA et al.
structive interference which degrades progressively
aforementioned resonance mechanism. This explains
u(x) and hRVB(x) decrease withx. For x,xc the ground
state is dominated by the resonating valence bonds and
RVB picture remains qualitatively correct.

For x.xc the interference due to the holes has drivenu
negative and it is no longer appropriate to interpretu(x) as
the square ofhRVB . Rather, the physical interpretation of th
overdoped region comes from the solution of the Coo
problem in thet-J, two-leg ladder and its BCS extension.
can be shown analytically that two electrons in the lat
system form a bound state only under certain conditions~de-
tails will be given elsewhere!. ForJ50.5, t5t851 one must
haveJ8.3.3048@note that the binding of two electrons i
the t-J chain requiresJ/2t.1 ~Ref. 14!#. The exact solution
for four or more electrons is difficult to construct, but w
expect it to be given essentially by a Gutzwiller-project
BCS-like wave function. A short-range version of the lat
type of wave function can be generated from the recurs
relation~8!, with u a negative parameter, which can be wr
ten as

u~x!52hBCS
2 ~x!,0 ~x.xc!, ~21!

wherehBCS is the BCS amplitude for finding two electrons
distance 1 along the legs. Of course this interpretation ofu as
minus the square of a BCS amplitude requires it to be ne
tive. As we put more electrons into the ladder the value
hBCS decreases, and for electron densities larger tha
2xc , we switch into the RVB regime.

The difference between the underdoped and overdo
regimes can be attributed to two different internal structu
of the pairs. In the low-doping regimex,xc , holes doped
into the spin-liquid RVB state form pairs with an intern
dx22y2-like structure relative to the undoped system. Ho
ever, forx.xc one moves into the low density limit chara
terized by electrons doped into an internals-wave-like sym-
metry. This issue will be discussed in detail in a separ
publication.

Let us now comment on Figs. 12 and 13. Both are v
similar and show that forx;1/2, b andc reach their maxi-
mum. At x51/2 there are as many electrons as holes, an
a certain sense the ground state of the ladder is a large-
reproduction of the microscopic ground state of the 232
cluster given in Fig. 4. Indeed forJ5J850.5, t5t851 the
ratio b/a of the parameters appearing in Fig. 4 is given
1.30, which is very close to the value ofb at its maximum.
For x,0.7 andJ850.5 the parameterb is larger than 1 and
it is always larger thanc for all dopings and couplings. Thi
is in agreement with the DMRG results of Ref. 9, whi
show the importance of the diagonal frustrating bonds ab
the horizontal or vertical ones forJ/t5J8/t50.5.

Finally Fig. 14 is a J/t-n diagram which shows the
boundary of phase separation obtained by means of
DMRG method and the RRM in the case whereJ5J8, t
5t851. Observe that this is not the strong-coupling case
have been discussing so far, and hence the validity of
RRM is more questionable.

The DMRG phase separation boundary was calculated
ing many different simulations on large ladders with op
boundary conditions. Phase separation on a large open la
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is easily observed—the holes form either a single hole-r
region in the center or two hole-rich regions on the en
with the rest of the system hole free. The density of holes
the hole-rich region gives a point on the phase separa
boundary. For most values ofJ/t relatively short ladders
(3232) could be used, since the hole density decay
quickly with distance to a single value near the ‘‘surface’’
the hole-rich region. NearJ/t;2.15, the surface was muc
less sharp and systems as large as 25632 were needed. In
this case many DMRG sweeps were also needed to eq
brate the hole density.

Within the RRM, the phase-separated state is constru
as the composition of two phases: one is a hole-rich ph
and the other phase is a hole-free phase with only spins

The energy of this state can be written as

eN,P
sep 5eN2P2 l ,01eP1 l ,P , S eN,P5

EN,P

ZN,P
D , ~22!

wherel counts the number of fermion pairs in the hole-ri
phase. We have used the RRM to calculate the energ
both phases looking for a minimum ofeNP

sep in l . Once the
minimum is achieved, the phase-separated energy is c
pared with the uniform phase energy to determine which
the two phases is more stable.15

We obtain an overall agreement between the results
tained with the DMRG method and the RRM~see Refs. 6,
16, and 17 for comparisons with other numerical results!. In
the two-legt-J model, phase separation is controlled byJ,
rather thanJ8, and so the strongest coupling we have co
sidered above,J8/t55, J/t50.5, t8/t51, does not phase
separate.

CONCLUSIONS

In this paper we have proposed an extension of the ef
tive hard-core boson model of the two-leg ladder of Ref.
in order to include the local structure of the hole pairs. T

FIG. 14. Boundary of the phase separation region in the c
where J5J8, t5t8, computed with the DMRG method and th
RRM.
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extended effective model, called the DHCB model, conta
dimer bonds, hard-core bosons, and various combinat
between bonds and holes, whose relevance have been st
previously with the DMRG method.9 Generalizing the meth-
ods of Ref. 10 to the case with holes, we study a variatio
ansatz for the ground state of the DHCB model, which d
pends only on three variational parameters. The resul
dimer-hole state is generated by a second-order recur
formula, which also leads to recursion formulas for the ov
laps necessary to compute the energy of the ansatz. We
the results of the energy minimization for the 2332 ladder
and compare them with those obtained with the DMR
method in the strong-coupling region. The recursion re
tions we have derived for the ground state energy can
solved analytically in the thermodynamic limit and the min
mization can then be done numerically. Finally we give
e
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al
e-
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ive
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physical interpretation of the behavior of the variational p
rameters with doping.
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